Knowledge Management of System Interfaces and Interactions for Product Development

Processes
by

Ronnie E. Thebeau

B.S. Electrical Engineering, Worcester Polytechnic Institute, 1992

Submitted to the System Design & Management Program
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management ARCHIVES
e T
Massachusetts Institute of Technology FEB 0 8 2001
February 2001 LIBRARIES

©2001 Ronnie E. Thebeau, All Rights Reserved
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis documents in whole or in part.

Signature of Author_

N\

Corporate Sponsol(

Certified By

Accepted By

Author: Ronnie E. Thebeau
System Design and Management
January 12, 2001

Corporate Sponsor: Patrick Hale
Director Global Systems and Controls
Otis Elevator Company

TJhesis Advisor: Dr. Daniel E. Whitney
Senior Research Scientist

Accepted By

LEM/SDM-€0-Director: Dr. Paul A. Lagace
Professor of Aeronautics & Astronautics and Engineering Systems

L¥M/SDM Co-Director: Dr. Stephen C. Graves
Abraham Siegel Professor of Management

Knowledge Management of System Interfaces and Interactions for Product
Development Processes

by
Ronnie E. Thebeau

Submitted to the System Design & Management Program
on December 21,2000 in Partial Fulfillment of the
Requirements for the Degree of Master of Science 1n
Engineering and Management

Abstract

A system architecture was developed and analyzed for a basic elevator system using a limited
number of system level components. A Design Structure Matrix was created which represented
the complex interactions of the system components. These components were derived from a
decomposition of system requirements, code and safety requirements, and evaluation of scenario
operational requirements. Clustering routines using cost assignment of interactions aided in
optimizing the cluster assignment of components. These cost assignments reflect cost and time
associated with managing interactions inside and outside cf subsystems. Management and
optimization of the interfaces between the clustered components leads to an architecture that
minimizes complexity and will hopefully lead to quicker and less costly product development
cycles.

Using this approach, near-optimal architectures can be analyzed and alternatives can be
evaluated for system level impact. As was observed with this test case, highly complex or
integrative systems are difficult to analyze, even with the tools utilized. These tools provided a
structured approach that utilizes an objective process. This approach provides documentation
and analysis of the architecture that is normally managed on the fly as product development
progresses. The results of the analysis can provide a framework for an organizational structure
of the product development process, provide an avenue for dialogue between design teams
responsible for different subsystems, provide a process for evaluation of architecture alternatives,
and identify the interactions between subsystems that must be managed carefully.

Thesis Supervisor: ~ Dr. Daniel E. Whitney
Title: Senior Research Scientist
Center for Technology, Policy, and Industrial Development

Acknowledgements

There are certainly many people I would like to thank as I finish the last part of my program at
MIT and complete this thesis.

First, I must thank those at Otis who have given me this unique and rewarding opportunity to
enrich my experience and knowledge. I'd like to thank the Otis senior management team for
supporting the program that opened up the opportunity. I'd especially like to thank Pat Hale for
sparking my interests in Systems Engineering, systems thinking, and for guiding me through the
process and believing in my abilities. I must also thank Dave Lanesey and Rudi Steger for being
extremely supportive of the extensive time required to complete this degree. They allowed the
school requirements to almost always come first. Their understanding and support allowed me
to give this program my full attention.

I'd like to thank my advisor, Dan Whitney, for his guidance as I worked through the thesis
process. 1didn’t always know where we were going with this, but he kept me on track. Thanks
for the attention and guidance. I'd also like to thank Qi Dong. Even at a distance, Qi provided
valuable guidance and tips as I got started with the DSM.

I'd also like to thank the staff of the SDM program and my fellow students for making this an
enriching program. We sometimes had fun too.

I must also thank my friends and family for their understanding and support. Ihave missed
many events over the past two years. I must thank my fiancée’s family for their support and
understanding as I was only able make occasional visits.

I must send a special thanks to my Mom (Norma), and my brothers Ricky and Mark. They have
been there for me as needed even though their schedules were also busy. Many times I had to
miss family events but they always understood. They made trips to visit me so that I had more
time to work. It’s great to have a family that you always know will be there. Thank you Mom,
Ricky, Mark. Hey Mom - look what I've done now!!

Most of all, I must send a HUGE thank you to my fiancée, Robin. Getting engaged during this
program wasn’t easy. Robin has delayed wedding plans, moved vacations, and put many other
plans on hold while this program progressed. Robin, thank you for waiting for me. We can now
begin the next stage.

Ronnie E. Thebeau 4

Table of Contents

CHAPTER 1 INTRODUCTION 7
IMOTIVATION....cceueetitieuetreeeteeteststeseresinsensasesesssseseesensesssmssntssssasesaesesaessee st sseseseeaeasesessesassenssssasassessessssessssssssesses 7
ORGANIZATION OF THE THESISeceveveuievieeeiitisteestestseseseeetstesssanesssseasssestestssessessessssssessesassssssssssessssssssssesessssssssssssses 8
CHAPTER 2 BACKGROUND 11
ELEVATORSoiotitirietiitrenstrsantassestastesseessstessssssessensensssasonsssssessensssanssenseonsessasesseasessessesnssssansessessessssssssssssessesssssnsens 11
BIIQF HISIOFY ..ottt vttt et ettt es s s sttt sas e sttt bt et ae et es e e ene s 11

HOW @LOVALOTS WOIK ...t e et ee e e e e ete e et e s e e e e ramseeeneesesseeas et e e e e e eee et 12

THE ELEVATOR SYSTEM DESIGN PROCESSuccuvitieiieieeeeeteseeeeestesesseeesesssesessesesssssssssessesssssessesssssssssessessessesssssss 14
THE ELEVATOR SYSTEM DESIGN PROCESSvveuvititinrteseeetesseesieeeeseseeseessssesssssasasssssessssssssessessasssssesssssssssssssssssses 15
THE DESIGN STRUCTURE MATRIX ...cueeteieereierenteiseestsessesestessseeesesstestaesesensessessesssessesseesssssssssesesssesssssssessssssssssssses 17
PREVIOUS WORKuotiiiiiniiiiiinienee e itiseesteetesstesaeeetessseassasesesssessesseneeensenaeasasseenssensesnsenseensesssessssesssssesssssessssssassas 19
CHAPTER 3 CREATION OF THE DSM 20
INTRODUCTION ...cotiritiiiiriteeeeenrieieeieeiaeetessessesesseestsestaessessstsssssssessstenssanseasssesasnsesssessesssesssensssssssssssssesssessssssssssssesss 20
FUNCTIONAL DECOMPOSITION......ceieotieitiiieeiieeieeitiesiseseseeeeseesesassesasesasesesssesssssssssssssessssssssssssssssssssssessssssssssesonesssses 21
SCENARIO ANALYSISeiieiiirieiiteireeneeeesreresresssesssssessssessesasessasseesessoseessessesessessesssssssssssssasesssssessessessssssssssssssssssens 21
FUNCTIONAL TO PHYSICAL MAPPINGcoectiiieeieiiiietteeteeeteeseteeeeessesseaseeessesssessesasssssssssassssasesesessssssssssesssssssesesssssns 22
ENTER THE DSM INTERACTIONSoecveviititetieteeetoteettieeeeeesteesessteseesesasestasssasessessesssssessssssessessssssssensessssssssssessssssssns 24
CHAPTER 4 ORIGINAL CLUSTERING ALGORITHM 27
ORIGINAL ALGORITHM BACKGROUNDcooieiveiiriieiinteiteeeeeseeeeesesssessossessssesssssssssessssssesssessssssssssesssssnsssssssssssssssssns 27
MATLAB® TOOLS.....coiuiriieiieienrieieieete oo sseenestessessesresssessesstessssseeasaneessesesnsestesssasessessensesssnsesnssseesssasessessessessesessesns 29
PARAMETER APPLICATION TO ELEVATOR DSM ...ttt eeeeeeaeeseessessseessessessseessesesssessssssans 30
RESULTS OF ORIGINAL ALGORITHM ..v.cvvotvivinrineieieseeeestestesssossesmsessssesesesessessessessesssssssssessans ssessessesssssssssessesssssesns 40
CHAPTER SUMMARY w...coouiiniitiiieirentesteneeetesteeseeeeseeseesssstesasessensssssesssssessessesssnsentestesssssesssssssssssssnssssessessessessessessessesns 42
CHAPTER 5 MODIFIED CLUSTERING ALGORITHM 43
INTRODUCTIONcoittiiitiinieniientniireseesteisseeseestessasessesssesssesssesosesssssssessssssesassassesssesseessssnsesssenseessrasesssssnsssssessessssssessns 43
PENALIZE COST OF MULTIPLE CLUSTER MEMBERSHIPSeecvtietteeeeetereeeasesseeseessesossesssssessssessessessssesssssssssssssssosssns 43
SAVE THE BEST SOLUTION.....uouuiiteteteeieetecteec e ireeeesteeseenesssessteneessesssstassesseasessesssesssssesssnssssesssnsenssssssssessessesesesss s 49
CHAPTER SUMMARY w..ciitiiiitiiiinieeetereetestessesiosessesssesseasesessssesasesessssasesssssessessestessessessessessesssessesssssssssssessssssssssesss 55
CHAPTER 6 CLUSTER ANALYSIS 56
MULTIPLE RUNS .ttt enttesttesteettee et ese e s sbaestesest s et esesesseenteesaassesnsesssssnessseensenssennsessesessssenssensesnesssesns 56
FINDING LIKE CLUSTERSeeettitiiiteetterresieeeseestessessessesstssseessessessesenssessessessessessassenssassesseesessesssesessesssssssssesssssssssssenss 57
VARIED INTERACTION LEVELSocoviiteitiitiiieenececteeteetesseseeesessesseenesasesessesassssessesssssensessessessessessensessssssessessnsossesses 62
EXTRACTION OF INTEGRATIVE ELEMENTScuviiuieuientieestieseeteeseeeeesseesseesansessssessessessssssssssssessessessssssssesssessessssssssses 63
CHAPTER SUMMARYoitiiiitiitiiuieeettenreeetissessessessesstossenseesssssssseesesasessesesssnsensessessessessanssessessssssssssssessensessensesssssenns 69
CHAPTER 7 RESULTS SUMMARY 70
CLUSTER ANALYSIS o teteittitteeeieiteestetetesteeestteestseesstensenseesseseesessenessessessessensessesssssassessssssssensossssssessssse s essseesseesns 70
SYSTEM ELEMENTS ... tititiiieniietietreeietieteee e eteeseest et eassssesntossssseseseneessesesasasessesessatesensensessesssssessesseessssensensonsonssnes 71
CLUSTERED ELEMENTScouvitiuiitititeteseeteeste e stesest ettt aeneseeesoneesesnessenessansasassssasansssssseasassessesassssssasenssmesssssssssesseaes 73
INTERACTIONS QUTSIDE THE CLUSTERScoveuviivirteereireeeseeseesseeseenssssentesasssssessessessesssasessessessesssessesssssessessesssssossonses 76
CHAPTER SUMMARYoioititeieitieieeentieteesessestesesestsstestesseesaesneesesasessssssesemssenssssestsssasssnsensssessessessessesssssssssssssssessssssses 77
CHAPTER 8 CONCLUSIONS 78

RESEARCH CONCLUSIONSuttiteieientiteienratstsiastssessssaseetessessssssesensssessassseseneseesesssensssosssesesenssassesenssssssanesensssssesesss 78

Ronnie E. Thebeau 5

FUTURE WORK ..ottt eteeteisesess e st ettt st steease e e e aeasesesasasesesesess e s e e se s e e e es e e s e s e e 81
CHAPTER 9 APPENDIX 83
APPENDIX A FUNCTIONAL DECOMPOSITION EXAMPLEvoveeeieeeteeteseeeeseseeeesersesessssseesssessssssessessssset e 83
APPENDIX B SCENARIO TO FUNCTIONAL MAPPING MATRIX «vvvveveeeeeecreeesereseeseseseesessesessssssessssssesssonssesesses 85
APPENDIX C FUNCTIONAL TO PHYSICAL MAPPINGouiitimenteeiereeeeeesereeeesressesssessessssssssensenssssssssssssseess oo e 86
APPENDIX D BASE DESIGN STRUCTURE MATRIX.....ccoomitiitinttieeeeeseeesseressssssssesssesssssessessssnssnsssssssssesee s 87
APPENDIX E FINAL CLUSTERING RESULTS «..vceutuiietetctieietiieestestseteeeeeeeesassessessssessesssssssessessssssssesssssssesssssseses 89
APPENDIX F MATLAB MODIFIED CLUSTERING ROUTINEScueemeetieteeteresteeseseeesseseessssesssssesssssessssssssssssssseses 92

BIBLIOGRAPHY 149

Ronnie E. Thebeau 6

List of Figures
Figure 1: Elevator SyStem DIAZIam ..u.uueueeeeeieiiiiiiiirieieereereieieesrerasiesiseseesenseesereeesesermenmeemsesisssssssissss 14
Figure 2: Design Structure MatrixX INDtEIactions.......c.cocevvuiruierienieniinieiiienieiee st 35
Figure 3: Foundation Algorithm Cluster Matrix - Element to Cluster Mappingcccceeveernueen 36
Figure 4: Foundation Algorithm - Clustered DSMu oo eeeeeeeeesteeerecsereeeeseeeesens 37
Figure 5: Foundation Algorithm- Cluster List EXampleccocccevviiiiiiiniiineiiiniireeniniineceieen 38
Figure 6: Foundation Algorithm Cost History EXample.......cccceeerveeiiiiecnerieniinicnnncninccenninnns 39
Figure 7: Cluster Matrix with Multiple Membership Penaltiesccccccvereriveerecricereracnneneeeennen 46
Figure 8: Clustered DSM with Multiple Cluster Membership Penalty......cccoeveeiieeiierienienicininnen 47
Figure 9: Cost History with Penalty for Multiple Cluster Membership......ccccccceviiiiiniiiiieinininnnn, 48
Figure 10: Elevator DSM with Varied Interaction Strengths......c.ccceeeevrevcciiieeninnnincrinnieennenneen. 51
Figure 11: Cluster Matrix of DSM with Varied Interaction Strengthscccoovveeienniiininennnn. 52
Figure 12: Clustered DSM with Varied Interaction Strengths........coeevvevreceeerceiieeeinicnnncecicnneenn. 53
Figure 13: Cost History, New Algorithm, DSM with Varied Interaction Strengths.........c.ccccc..... 54
Figure 14: Cluster Likeness EXAMPIEcceerieiiiireneiiuieeierenieeemeteettereesereteeessseesseesssnearsssenseseses 58
Figure 15: Example of Cluster Average Likeness Calculationcoeveeveerirereercrneeciicnennneccininnenn. 59
Figure 16: Cluster Likeness Example Plot; Standard Interactions..........coeeeeeeevveeerinnereeecinnennans 61
Figure 17: Ciusters driven by Integrative ElemMeNtS. uvceerrirvrrnriereereeeeeeereereerneeeertiaeeeiessinnenneeens 64
Figure 18: Cluster DSM with System Parameters on the QutSideoocveeereiieiiniiiereciieeneieecinnns 67
Figure 19: P& W Distributed and Modular Parameters....c..ccceeeeeereeereririeeeieeemneiieeeniniiieneeeeeeneenn 68
Figure 20: Interactions outside Of the CIUSIETuvuuureirirreriiieeetnereereeeeeeerrereerereeremmmronisesseesees 77
List of Tables
Table 1: Example DSM INtEractions........cccecueereereiiiiireiniiiiiiiniiiiiisstenrre e essse s s e asesneessnasseas 18
Table 2 : Clustering Parameter ValUues..........ccoouviiiiiiiiiniiiciiicci e 31
Table 3: Clustering Analysis Resultsccooiiiiviiiiiiiiiiii 70

Table 4: Cluster Defined System TTeeccocvvviiiiiiiiiiiiiic i 75

Ronnie E. Thebeau 7

Chapter 1 Introduction

Motivation

Product development of today’s complex systems often requires managing large numbers of
interfaces, both physical and organizational. Physical systems and their architecture continue to
become more complex as the number of interfaces grows and “increasing complexity is at the
heart of the most difficult problems” (Rechtin & Maier 8). To reduce complexity, it is often
desirable to minimize the number of actual interfaces close to what may be considered an
optimal or essential number of interfaces that produce the desired functionality and meet product
requirements. Managing these interfaces requires an understanding of functional requirements,
system interactions, and the system implications of local design changes. Engineers and product
development managers usually have a good understanding of local design requirements, but may
frequently under-estimate the system effect of interface architecture or the effect of local design

changes.

It is believed that insufficient knowledge management of system interfaces may result in an
excess number of interfaces, design induced rework, or insufficient knowledge of implications of
design changes. A knowledge management tool to document, track, and analyze system,
subsystem, and component interactions may minimize the number of interfaces, reduce cycle-
time by minimizing rework, and provide an essential systems understanding for engineers and
managers. Efficient interface design will also allow for technology and design updates of
product components while minimizing the impact on other components and the system level

architecture. Ideally, the objective is to define proper interfaces that allow efficient

Ronnie E. Thebeau

upgrades/changes to product components without causing rework that is not functionally
required by the upgrade/change. It is highly desirable to have a process for developing an
optimized interface architecture that is independent of current technology, company history and

organizational structure, and one that is able to support efficient field service.

The management of complexity related to interactions is equally important to product
development organizations. As the number of interactions between development teams
increases, delays are incurred from waiting for information and errors are more likely as designs
are more reliant on information from other teams. Therefore it is equally important to optimize

team interactions as it is for a system’s physical interactions.

Organization of the Thesis

To create a process and method for evaluating interface architectures, a test case will be
developed for a roped elevator system. The test case will be somewhat generic but will carry
enough detail to evaluate the requirements across different engineering disciplines, interface
types, and functional requirements. This test case will also demonstrate the potential for using

this method on actual products.

There are several stages of this work. The first set of activities will be focused around the

creation of a Design Structure Matrix (DSM) and will be covered in Chapter 3. The DSM will
represent the interactions between the elements and will be used to document and evaluate the
interface architecture. The DSM will be created through a functional decomposition of system

level requirements. These functional requirements will then be used to develop the physical

Ronnie E. Thebeau 9

systemn that will represent the functional requirements. The physical elements will be mapped to
the functional requirements through a matrix implementation. Then finally, the DSM will be

extracted from the functional to physical mapping.

The second set of activities will be focused on evaluating the example DSM with a clustering
algorithm. The “first step in structuring is usually aggregating — collecting or clustering closely
related functions or requirements together” (Rechtin 39). The clustering algorithm will be used
to optimize the architecture by grouping like elements. The objective will be to contain the
majority of element-to-element interactions within clusters and minimize the interactions outside
of the clusters while keeping the size each cluster reasonable. “Choosing the appropriate
aggregation of functions is critical in the design of systems.” (Rechtin 39) The implementation
and evaluation of a foundation clustering algorithm will be covered in Chapter 4. The
foundation clustering algorithm is based on work by Carlos Ifiaki Gutierrez Fernandez in his
thesis “Integration Analysis of Product Architecture to Support Effective Team Co-location”.
This initial algorithm will be used to evaluate clustering, its application to the elevator problem,
and initially get appropriate clustering parameters. This algorithm will also be used to get an

understanding of the clustering procedure.

The objective is to produce a system architecture, and possibly an organizational structure, by
assigning system elements to groups. With this, we can learn more about the elevator system
and how its components can be optimally clustered to minimize unnecessary interfaces. The end
result provides some innovative ways to cluster the elements to produce an architecture and it

confirms some of the design choices for the current architecture. Th results will show that some

Ronnie E. Thebeau 10

elements produce well-defined clusters while other elements hinder optimal clustering. When
the elements hindering effective clustering are removed from the clustering calculations, they
provide valuable information if redefined as a system element that is managed differently than

the clustered elements.

The example problems in Fernadez’s work were much simpler than the elevator problem, and
were mainly focused on effective co-location of team members. The clustering algorithm in
Fernandez’s thesis will be extended to make it more applicable to the elevator problem. The
changes will reflect the needs of complex real-world problems where there is a large number of
elements. Several modifications to the algorithm will be evaluated. The final clustering

algorithm and parameters will be documented in Chapter 5.

All findings of the clustering routines, including how well it evaluated and proposed interface
architectures, will be discussed in Chapter 6. The results and their implications on architecture
and product development organizations will be covered in Chapter 7. Finally, conclusions and

proposed future work will be covered in Chapter 8.

Ronnie E. Thebeau 11

Chapter 2 Background

Elevators

The interface issues and clustering algorithms for this work have been applied to a basic roped
elevator system. The elevator system presents some issues that make clustering and interface
design nontrivial. The elevator system does not provide any natural grouping that spans the
system. Instead the elevator is made up of many subsystems that represent different types of
interfaces. These interfaces may not always be spatially close and can be highly integrative.
There are control, communication, power, structural, and safety functions that are all integrated
into an automated system that must communicate and take commands from the lay person, meet
performance requirements, and maintain safe operating conditions for the passengers and service

personnel.

Brief History'

Prior to 1852 elevators had largely been used as a hoisting device for freight with the largest
advances coming from steam and hydraulic power. In 1852, Elisha Graves Otis introduced the
world’s first safety system that would protect the passenger in case of a breakage in the ropes. In
1857 the first passenger elevators were installed in New York and by 1873 over 2,000 elevators
were installed across America. In 1903 Otis Elevator introduced the first elevators that were

driven directly by an electric motor, without a gearbox, and it cleared the way for the era of the

‘ Dates and statistics obtained from Otis Elevator Company public web page at
http://www.otis.com/aboutotis/elevatorsinfo/

Ronnie E. Thebeau 12

skyscrapers. Since then improvements and innovations have included automatic controls,

microprocessor based controls, improved ride quality, and improved performance times.

How elevators work

The basic roped elevator (Figure 1) consists of a cab or containment to hold the passenger or
load, a counterweight to balance the weight of the cab and an electric motor to provide the
motion. Hoist ropes (usually steel cables) connect the _ab and counterweight and are wrapped
over a rotating sheave that is connected to the motor to provide motion. Compensation ropes are
connected to the bottom of the cab and bottom of the counterweight to counterbalance the weight

of the hoist ropes as the cab and counterweight travel up and down.

The cab and counterweight travel in a shaft called the hoistway that runs the length of the travel
distance for the system. Steel rails are located on the side of the hoistway for guidance of the cab
up and down the hoistway. The guidance system maintains the orientation of the cab with
respect to the building. A similar set of rails guide the counterweight. The motor and control
systems are usually located in a room at the top of the hoistway called the machine room. The
combined hanging weight of the cab and counterweight provide the necessary traction for the

ropes so that they don’t slip on the motor sheave.

The control system is usually located in the machine room and receives signals from different
sensors and systems located on the motor, in the building hallway, within the hoistway, in the
machine room, and in the cab. Motion commands and requests can originate from the hallway,

the cab, or other systems (group control, building systems control, etc.). A multiple wire cable

Ronnie E. Thebeau 13

(travel cable) that connects the machine room to the cab supplies power and communication
signals for the cab. One end of the travel cable is anchored at the machine room and the other

travels with the cab.

The mechanical safety system consists of mechanical jaws located beneath the cab to stop it in
case of rope breakage or an uncontrolled falling motion in excess of maximum speed. The
mechanical jaws (called safeties) are activated by a mechanical governor system located at the
top of the hoistway. The governor is connected to the safeties by a rope and when the cab speed
exceeds the maximum, the governor system clamps the governor rope and pulls on the safeties,
causing them to drop and lock onto the steel rails. There is also a buffer, usually a hydraulic
piston, located at the bottom of the hoistway, to cushion the landing of the car in case it travels

below the bottom floor.

Ronnie E. Thebeau 14

Control System

Drive System

Gearless Machine

Primary Velocity Transducer

Smart Primary Position Transducer
Governor

Hoisting Ropes

Roller Guides

Secondary Position Transducer
Door Operator

Entrance-Protection System

Load-Weighing Transducers

Car Safety Device
Traveling Cable
Elevator Rail

Counterweight

Compensation Ropes

Car Bufter
Counterweight Buffer
Compensation Sheave

Governor Tension Sheave

Figure 1: Elevator System Diagram"

1

Otis Impact Resource CD. Copyright Otis Elevator Company 2000

Ronnie E. Thebeau 15

The Elevator System Design Process

The design process for an elevator system typically takes 2-5 years for new product development
and 1-2 years for product modification. The process usually begins with a marketing request to
meet some new market requirements for product performance, price, or features. When the
market requirements have been defined, engineering must evaluate the request for feasibility and
resource availability. This part of the process usually includes discussions with manufacturing,
field service, and product strategy experts. After negotiations, a document is produced to define
the system requirements. Sometimes this takes the form of a modification to an existing product

or it can initiate a new product development.

During the development phase that defines the system requirements, there are often many
requirements that must be traded off. Product performance usually comes at a price, and the end
user of an elevator system (riding passenger) is usually not the purchaser of the product (building
owner, construction company). Therefore performance for the passenger must be weighed
against the cost requirements of the purchaser. Every installation of an elevator is a unique
system as all buildings vary in height, number of floors, floor height, number of door openings,
etc. The performance parameters such as maximum load weight, maximum velocity, maximum
acceleration also varies from building to building. Even the system inertia (total mass) varies
with the height of the building and the purchaser’s decisions on the style and features of the
passenger cab. Because it is impractical to design a system for each building, the system design
must be able to operate in a range of conditions, as each installation is custom built. It is also
impractical to design many different systems because of the relatively small volume and high

cost of engineering and manufacturing for each system. This usually results in some type of

Ronnie E. Thebeau 16

platform for a range of products. These platforms cover a range of duties. The platforms usually
fall into one of three categories- hydraulic systems, geared systems (systems using a gearbox),

and gearless systems (system whiteout a gearbox).

One of the difficulties with the platforms is they usually address very different segments of the
market (performance, price, and options) and can create very different architectures. The
architectures are not usually interchangeable between platforms. This can cause significant price
or performance variations between market segments and can force a customer into a platform
that does not meet their particular needs. This can be especially true if a customer has a need
that borders two platforms and all decisions and concessions can make one of the available
products infeasible. It can be very difficult to define the design parameters, as the exact

operational requirements will vary from building to building.

The design decisions must also consider the many systems and people for which it interacts.
This can include the riding passengers, freight, traveling robots (common in hospitals), other
elevators (group control), building system managers (software/hardware systems to monitor &
control building systems), service personnel, the building, power supplies, emergency
equipment, emergency personnel (firefighters, medical, etc.), and others, as well as the interfaces
that occur with the elevator system itself. Each of these brings separate requirements and

additional considerations for the system architect

Therefore, it is highly desirable to create a system architecture that meets system performance

requirements, but for which the interfaces are standard and optimal. This can create a more

Ronnie E. Thebeau 17

versatile architecture for which components of platforms are interchangeable as the needs arise.
It can also create a situation where the design groups can design sub-systems that, if they
maintain the interface architecture, can be designed to replace or update technology without

having to make changes to other parts of the system.

The Design Structure Matrix

The Design Structure Matrix is a useful tool for representing the interactions between different
elements. These elements can take the form of physical components, design teams, systems,
design parameters or any other items where an interaction or interface occurs. The interaction
typically takes the form of energy, spatial, material, or information (Pimmler 7). The DSM also
shows direction of flow. Interactions below the diagonal indicate feed-forward interactions and
above the diagonal interactions indicate feedback. Feedback and feed-forward are especially
important for time or decisions based sequences. For more detailed information on the DSM see
the Pimmler and Eppinger paper or go to the Massachusetts Institute of Technology (MIT) DSM

web pagem.

As an example DSM is shown in Table 1. This example will discuss sequencing but it is not
used in this research project. If the DSM contained design parameters then sequencing would be
important, as the order of completion would be important. For the purposes of this paper
sequencing is not considered as crucial as is the knowledge of where the interfaces should be
optimally designed. The locations of interfaces are the primary parameters regardless of the

direction of the interaction at the interface.

Ronnie E. Thebeau 18

There are several types of interactions shown in this example. The diagonals do not have any
significance, except that an element interacts with itself. All diagonals usually have an entry.
Interaction BC represents an interaction where Element-B provides something to Element-C. If
sequencing were being considered, Interaction-BC would be feed-forward. Interaction-DB
represents an interaction where Element-D provides something to Element-B and Interaction-BA
represents an interaction where Element-B provides something to Element A. If sequencing
were being considered, Interaction-DB and Interaction-BA would represent feedback.
Interaction EA represents the condition where Element-E passes something to Element-A and
interaction AE represents the condition where Element-A passes something to Element-E. If
sequencing were considered, they represent feedback and feed-forward respectively. Together
they may represent a coupled interaction where the two elements are dependent on or interact

with each other.

To

ey
Sk

moiO|w >

AE X
Table 1: Example DSM Interactions

The entries of the DSM can represent the strength of the interaction. For example, for each of

the interactions in Table 1 (AE, BC, DB, EA), the value placed in the DSM could be 1 if we

" http://web.mit.edu/dsm/

Ronnie E. Thebeau 19

want to weight each interaction equally. An option to vary the interaction strength could
possibly use 0.5 for a weak interaction, 1 for a normal interaction, and 2 for a strong interaction.
The choice depends on what will be done with the DSM and how it affects the analysis. The
DSM created for the elevator system started with 1°s for all interactions, but later the interaction
strengths were modified to represent weak and strong interactions. The details for the elevator

DSM will be discussed later.

Previous Work

The methodology of creating a DSM is based on an explanations published on MIT’s DSM web
page and a MIT Master of Science Thesis by Qi Dong, "Representing Information Flow and
Knowledge Management in Product Design Using the Design Structure Matrix”. The method
for creating a DSM from a functional-to-physical mapping is based on an idea generated by Qi
Dong. The base mathematical clustering algorithm is developed from the clustering algorithm in
the Fernandez thesis. Pimmler and Eppinger have suggested some additional ideas for clustering
and varying interaction strengths in their paper. These previous works developed the foundation
for the process that was followed to analyze system interface architecture and product

development process.

Ronnie E. Thebeau 20

Chapter 3 Creation of the DSM

Introduction

This chapter will cover the creation of the Design Structure Matrix from listing the elements to
be included to entering the DSM interactions. It will include the different methodologies used to
list the elements; a functional decomposition of the system, a check of the list of elements using
scenarios, and a functional requirements to physical elements mapping. It will also cover the

method for identifying the DSM interactions and then entering them into the DSM.

To create the DSM that was used in this process, an example system was chosen that represented
a basic roped elevator system. This particular system was chosen because is was basically
generic and was most representative of any elevator system. The DSM that was created is not
complete, nor is it completely correct. Instead, this is an example DSM with an understanding
that more work can be done to complete the DSM or make it more representative of an actual or
desired system. This author took some liberty in creating the entries. Some functional
requirements and physical implementations are generic and not representative of any particular
system while other entries are representative of an actual elevator system. The idea was to create
an example DSM that could represent all of the problems that we would look to analyze with the
clustering routines. Because of this, some of the DSM entries are high-level system
requirements and others are more detailed. If an actual system was being analyzed or developed
it is expected that much more work would be dedicated to the creation of the DSM and its

entries.

Ronnie E. Thebeau 21

To create the DSM, a 5-step process was followed as listed below.
1. Functional Decomposition of high-level elevator requirements.
2. Scenario Analysis to verify and complete the functional requirements listing.
3. Functional-to-Physical Mapping
4. DSM Extraction from Functional-to-Physical Mapping

5. Enter the DSM Entries representing the interactions

Functional Decomposition

Assembling functional requirements through a basic decomposition of the high-level system
requirements started the process of creating the data for the DSM. Due to time constraints not all
requirements have been captured, but instead, an important subset was developed for the
purposes of testing the feasibility of using clustering algorithms to aid in interface design. The
process yielded the basic and most important functional requirements as observed in the outline
presented in Appendix A. Other functional requirements were derived from analyzing possible
operational scenarios. Existing architecture was also examined in an effort to capture some of

the current interface designs.

Scenario Analysis
Examining operational scenarios is one approach for ensuring that all functional requirements
have been captured. This approach was used to supplement the functional requirements listed

through functional decomposition of the high-level system requirements. Several scenarios for

Ronnie E. Thebeau 22

normal operating modes and abnormal or failure modes were listed. Then the functional
requirements that were obtained through functional decomposition were mapped to the
operational scenarios. If the functional requirements did not adequately address the operational
scenario, additional functional requirements were added so that it adequately covered the
operational mode. Many of the additional functional requirements that were found through this
process mainly dealt with code issues, failure issues, and some requirements that were derived
from design decisions. A complete listing of the functional requirements and the scenario

mapping can be found in Appendix B.

Another motivation behind the mapping of the scenarios was the possibility of examining how
the clusters address the different scenarios. For example, it may not be optimal for a cluster to be
built if only one element of the cluster was needed to address any scenario. If that were to occur
there may be some cost associated with applying a cluster to an operating condition when the
cluster did not efficienitly address the scenario. Using the scenario to functional mapping and the
functional to physical mapping, we may have been able to extract clusters for each of the
scenarios. Therefore there may be some additional procedures or algorithms that could be
developed to address clustering to meet operational scenarios. Unfortunately, there wasn’t
enough time to complete this part of the analysis. This may be something to consider for future

research.

Functional to Physical Mapping

The next step in the process was to create a mapping of the functional requirements to their

physical implementation. This process closely followed research work by Qi Dong and she was

Ronnie E. Thebeau 23

consulted as this work progressed. The main idea behind this process is that every functional
requirement is answered by zome physical implementation. Therefore, for each functional
requirement a single physical element was listed. Sometimes this was difficult, as it appeared
that there might be several physical elements that implement the functional requirement. Upon
closer examination, it was found that the functional requirements that appeared to have more
than one physical element to implement it, was actually made up of more than one functional
requirement. In other words, the functional requirement could be broken down into several
functional requirements so that there was a one to one mapping of functional requirements to
physical elements. Because of this, this process alsc uncovered other functional requirements.
Usually these additional functional requirements were derived requirements from the physical
implementation that was being modeled in the mapping. The additional functional requirements
are second and third tier functional requirements that result from a zigzag process of defining
functional requirements, mapping the functional requirements to physical elements, which then
get mapped to additional functional requirements, that get mapped down to rnore functional
requirements, etc. The functional requirements listed in Appendix B contain all functional
requirements that were listed either through functional decomposition, scenario analysis, or

function to physical mapping.

Once the functional to physical mapping had been completed, it was time to place the entry
marks into the matrix to represent the interactions. Although it should have been possible to
enter the interactions in a functional-to-functional mapping or a functional-to-physical mapping,
I found it very difficult to correctly identify all of the interactions. Instead, I moved directly to

the next step of creating the physical-to-physical mapping (physical DSM) and then entered the

Ronnie E. Thebeau 24

interactions. The mapping of the functional requirements to physical elements can be found in
Appendix C. Although this mapping was created, there was not sufficient time to use the
functional-to-physical mapping to evaluate the clustering or the resulting architecture. The
entries developed in the physical-to-physical mapping were transferred to the functional-to-
physical mapping since this process assumed that every functional requirement could be replaced
by its physical implementation. If time had allowed, additional analysis of the clusters using the

functional-to-physical mapping could have been observed.

The next step in this process was to replace all of the functional entries on the matrix with their
corresponding physical element. This resulted in a matrix with the physical elements on both
axes of the matrix. This then represented the DSM that was going to be used. After creating the
DSM axes, the physical interactions were documented. A generic mapping of the DSM without
interaction strengths can be found in Appendix D. This base DSM served as the foundation for

entering the interaction strengths.

Enter the DSM Interactions

Initially in this process, all types and strengths of interactions were entered into the DSM with
equal weight. The DSM interactions included power, communications, control, safety, and a
category called other. These do not match the classical categories of energy, material exchange,
and information”. In any case, the DSM treated all inte:actions the same. The reasoning behind

this is that an interface must be managed without much regard for the type of interaction that is

" As specified in the Pimmler and Eppinger paper

Ronnie E. Thebeau 25

taking place. A design team or a subsystem must manage all interactions regardless of the type.

All interactions have cost associated with them.

To simplify the process, all interaction strengths were initially weighted equally. For example,
all X’s in the DSM in Appendix D were initially replaced with 1’s. This allowed the analysis of
the clustering algorithm and a check of the results without complicating the process because of
varying interaction strengths. Once the process and algorithm had been completed, the
interaction values were then modified to acknowledge the different strengths of the interactions.
A strong interaction received a 2 and a weak interaction received a 0.5. For the purposes of this
research, a strong interaction was defined as an interaction that was highly important, critical to
operation, or was not optional. Weak interactions were defined as interactions that were not
important to the design of the system, interactions that were a result of design choices but may be
modified, or interactions that were not critical to the operation of the system. As will be
discussed in Chapter 6, the clustering algorithm yielded better results when the strength of the

interaction was accounted for in the analysis.

As previously discussed, all types of interactions were treated the same. An energy interaction
was treated the same as a communication interaction. If time had allowed, further analysis may
have included clustering on different types of interactions or some type of combined clustering.
The combined clustering would take into account all types of interactions and would recognize
that an element could interact with another element in different ways. The cost of an interaction
between two elements would be higher if they shared more than one interaction type rather than

the current method of equal interaction weights regardless of the number of interactions taking

Ronnie E. Thebeau

26

place between the two elements. For this research project, all interaction types were treated

equally.

Ronnie E. Thebeau 27

Chapter 4 Original Clustering Algorithm

Original Algorithm Background

This analysis was begun with the basic clustering algorithm developed in the Fernandez thesis.
For a detailed explanation of the algorithm, see the thesis by Fernandez. Developing co-located
design teams was the primary purpose for the clustering algorithm developed in Fernandez’s
research. That is slightly different than the intent of this research, but the concepts are the same.
The algorithm by Fernandez will be modified in Chapter 5 for real-world complex problems as

applied to this elevator example.

The original algorithm was written in C code, compiled and linked to Microsoft® Excel. The

original algorithm consisted of several steps.

1. Each element is initially placed in its own cluster

2. Calculate the Coordination Cost' of the Cluster Matrix

3. Randomly choose an element

4. Calculate bid from all clusters for the selected element

5. Randomly choose a number between 1 and rand_bid (algorithm parameter)

6. Calculate the total Coordination Cost if the selected element becomes a member of the
cluster with highest bid (use second highest bid if step 5 is equal to rand_bid)

7. Randomly choose a number between 1 and rand_accept (algorithm parameter)

8. If new Coordination Cost is lower than the old coordination cost or the number chosen in

step 7 is equal to rand_accept, make the change permanent otherwise make no changes
9. Go back to Step 3 until repeated a set number of times

There was also simulated annealing in the algorithm to avoid getting stuck in a local optimum
when there may have been a better global optimum. The simulated annealing worked by making

a change without using data to determine of the change is beneficial or not. This was

Ronnie E. Thebeau 28

accomplished in step 6 by randomly (1 out of N times"') taking the second highest bid rather than
the highest bid. The second part of the simulated annealing was to randomly (1 out of M*!
times) accept the change even if the coordination cost was not improved in step 8. N and M

were parameters of the clustering algorithm.

The bid was calculated with the following formula. Note that the bid is calculated for the
randomly chosen element in step 3.

For the element chosen in step 3, get a bid from each cluster j such that

. de
. inout JPOW¢eP
ClusterBid i= () pm—eey
(ClusterSme j)p
where:] = cluster number
ClusterBid; = Bid from Cluster j for the chosen element
inout = sum of DSM interactions of the chosen element with
each of the elements in cluster j
powdep = exponential to emphasize interactions
powbid =exponential to penalize size of the cluster

The Coordination cost was calculated with the following formula. The Coordination Cost is
calculated using the DSM matrix and the Cluster matrix that defines which elements are in each

of the clusters.

For an interaction between element j & k that occur within a cluster

IntraClusterCost = (DSM(j, k) + DSM(k, j)) * ClusterSize(y)POWee

¥ Coordination Cost is the calculated value of the objective function of the optimization routine

Ronnie E. Thebeau 29

For and interaction between element j & k that occurs outside of a cluster

ExtraClusterCost = (DSM(j, k) + DSM(k, j)) * DSMSize P°% ¢

TotalCost = ¥ IntraClusterCost + Y ExtraClusterCost

where:

TotalCost = Coordination Cost

IntraClusterCost = Cost of interaction occurring within a cluster
ExtraClusterCost = Cost of interaction occurring outside of any clusters
DSM(j,k),DSM(k,j) = DSM interaction between element j & k
ClusterSize(y) = Number of elements in the cluster y

DSMSize = Number of elements in the DSM

powcc = penalizes the size of clusters

These equations served as the basis and starting point for the analysis and clustering of the

elevator DSM.

Matlab® Tools

As previously discussed, the clustering algorithms had been written in C-code, compiled and
linked to Microsoft Excel. Ihave instead chosen to implement the algorithms in the
mathematical package Matlab. I have chosen this package for several reasons. Ihave extensive
experience with using Matlab and writing routines and analysis packages within the Matlab
environment. There is no compilation of code; therefore changes to the algorithms could be
made without having to recompile. Matlab is also designed to work with and manipulate
matrices very easily. Matlab routines can work on any computing platform that has Matlab

installed. Matlab also has capabilities to link with Microsoft Excel and it is possible to design

“'N was a settable parameter
"' M was a settable parameter in the algorithm

Ronnie E. Thebeau 30

graphical user interfaces. Matlab also has extensive graphical capabilities that could be used in
the analysis. For these reasons, all manipulation, calculations, and analysis have been

implemented in the Matlab package.

In addition to the implementation of the clustering algorithms in Matlab, several Matlab routines
were created that would graphically represent the data. This eased the task of analyzing and

reporting the resuits.

Parameter Application to Elevator DSM

The clustering algorithm was then applied to the elevator DSM that had all interactions valued at
1. The initial run had the parameters set at their default values and then they were adjusted to get
an appropriate level of clustering. The process of getting suitable parameters was done on a trial
and error basis. This process of trial and error allowed the user to get a better understanding of
the clustering parameters but it became frustrating as each run could take approximately 5-10

minutes*™”

to complete.

The parameters’ default values and final values are shown in Table 2. The default values are
those suggested by the Fernandez thesis. The final values are the parameters that appeared to
give the best results for the elevator DSM. The final parameters were also used for the modified

algorithm in Chapter 5.

“ Calculations performed on a Laptop with a 233MHz processor & 64M RAM

Ronnie E. Thebeau 31

Parameter Default | Final

pow_cc 1 1
pow_bid 0 1
pow_dep 1 4
max_cluster_size 61 61

rand_accept 30 122

rand_bid 30 122
times 2 2
stable_limit 2 2

Table 2 : Clustering Parameter Values

The parameter pow_cc penalized the size of the cluster in the cost calculation. When the value
was increased from the default level of 1, it had a minimal effect on reducing the maximum

cluster size. Therefore the best results were obtained with pow_cc set at 1.

The parameter pow_bid was initially set at zero, which resulted in the size of the cluster not
being penalized during the bidding process. Therefore a large cluster has as much weight during
the bidding process as a small cluster if the interaction values were equal. Because of the
exponential nature of the bidding algorithm, if pow_bid was set higher than 1, the clustering
algorithm produced many small clusters because the larger clusters were penalized so high. The

best results were obtained with pow_bid set at 1.

The parameter pow_dep emphasized high interactions during the bidding process. When
pow_dep was set at the default value of 1, there was marginal emphasis placed on the
interactions. This became important as the size penalty (pow_bid) was increased. When
pow_dep was set at lower values, the cluster algorithm was more likely to produce results with

many small clusters (especially when the size of the cluster was penalized). The best results

\

Ronnie E. Thebeau 32

were produced when pow_dep was set to 4. For the elevator DSM, there didn’t appear to be
much of a difference in the results if the value was set higher than 4, but lower numbers
produced small clusters when the size penalty was used. Therefore, the final value for pow_dep

was set at 4.

The simulated annealing part of the algorithm used parameters (rand_bid, rand_accept) that
specified how often the algorithm would make a less than optimal change. The parameter
rand_bid specified how often to accept the bid from the second highest bidder instead of the
highest bidder. The algorithm worked by randomly (approximately 1 out of rand_bid times)
accepting the bid of the second highest bidder instead of the highest bidder. The parameter
rand_accept worked similarly. The algorithm randomly (1 out of approximately rand_accept
times) would make a change by making an element a member of the highest bidding cluster even
if the change did not improve the calculated objective cost. I started the evaluation with the
parameters set at /2 of the DSM size. This setting would cause the algorithm to make less than
optimal changes after choosing approximately half of the elements in the DSM. After several
runs it became apparent that such frequent changes resulted in the algorithm taking a long time to
=in and the final result was rarely better than when the changes were made less often. Because
of the nature of this algorithm, it was possible for the simulated annealing changes to result in
final solutions that were not as optimal as a solution that may have been found prior to the
change. This problem will be discussed further in the next section, but the final outcome was
that the clustering algorithm worked better if the simulated annealing occurred less often.

Therefore, the final parameters were set to twice the size of the DSM.

Ronnie E. Thebeau 33

Times and Stable_limit were set at 2. These parameters specified how long the algorithm would
run before it reported the results. Times specified the number of times (times*DSM Size) the
algorithm will pick a new element before checking for stability. Stable_limit specifies the
number of times it must loop though the process without making a change. Therefore the
algorithm will have to loop through the process at least Times*DSMsize*Stable_limit without
making a change before it finishes. The value of 2 appeared to be sufficient to find an optimal
solution. Setting these parameters higher than the default level caused the algorithm to take
longer to run and didn’t appear to produce better results. Therefore, the values were finally set at

two.

To illustrate some of the problems, an intermediate trial run is contained in Figure 2 through

Figure 6. The parameters for this run were as follows:

pow_cc 1
pow_bid 0
pow_dep 1
max_cluster_size 61
rand_accept 30
rand_bid 30
times 2
stable_limit 2

Figure 2 contains a graphical representation of the original DSM before clustering. Figure 3
contains a graphical representation of the cluster matrix after clustering. Figure 4 contains a
graphical representation of the DSM after clustering has been applied. Figure 5 contains a
textual list of the physical elements that are members of each of the clusters as well as

information pertaining to their location in the original DSM and whether or not they members

Ronnie E. Thebeau 34

are members of more than one cluster. Figure 6 shows a graphical representation of the

calculated coordination cost as the algorithm progressed to find an optimal clustering solution.

As can be seen by the run in Figure 4 there is a cluster that contains about a third of the DSM
elements. For the elevator DSM, I was looking for cluster sizes that contained about 6-10 items.
The desire is based on the size of the cluster versus the DSM size, knowledge of the system and
its elements, and the desire to keep the number of elements to something that would be easy to
understand. A cluster with 20 or more elements is difficult to manage and will contain elements

that are not highly integrated but are only indirectly connected through other elements.

Ronnie E. Thebeau

35

DSMMava, K19 Dec-2000 203933
Etement

7B 91041 213141591617181920212723242526272829303132333435363738I04041 424344454647 484950515233545558 5758506081 0

CYTTTTr TTTV7rY L 2 I 0 B B B SN B B B B N N B R N B B B BN B N N B R B AR g
B . o . i s =
I - > N -
4ap- . B —
p - - v N o
- W -
_ o . N 3
BE . : 3
1 ot .
1 > Lo P
1 - M -
15 ¢ T - A . P -
= . B 3
qE P 3
- ks ‘ Ko -
- o " P 5 -
- o . . <
b o . *e - -
L . B . X ps
Lo p
N .. B ey R 1 L -
- ‘. . . : o
- SRR ¥ . 3 3
- v Ial s @ % =
29 = - N " . -
- el - }’ & -
- . v “ A ..
- 4 e g at 1 —
- . A ;, ‘-,: % 3
- B
- : N B I T I
- & B A F O
- oo Prdp i S oo G B R RS
@ k;
. wedrn : Wy e gﬂ' oA e e
Y "
4 ‘\,?
4 3
Pre o “
48 = &
b w
48 = A
9 7] ’$
50 b N
HE
53 - 53 E
54 p g
55 |- 2 RS 4 & @
58 b= RS . v T e
87 = ¢ R AN] &
58 2 -~ S T . o
sk . . R £ .
Pt RS oo M + p
Oy Y sttt e ettt ittt riay

Figure 2: Design Structure Matrix Interactions

Ronnie E. Thebeau

36

Clusters

DSM Elements

A

—

Clustr Me¥ar 19-Dec 2000203932 \

Berment

01234567 8 9101112111415161718192021222324252627287 » 323334353637 36304041 474344454847 48495051525354525857 583060681 0

Members of the
cluster

o LALELAL A S B L B O 0 B A B 2 B B AR B B A B B B B B B B e
L R i : . : .
4 o i i . i . b
i [: PR PP i
i F ; H LI AN T A T f i
s : Ps : . . H . . -
sk : S H : H . e
s - . i i : P i] b
1 b : R i . e
s |- i i i
i N i : A
LRI & : s -
3 . H
o H : .
12 1 : i
1 : $ B
14 ' H : g-
15 = i 3 -t
Ty 3 ; -
it i
Ty =
19 b= H -
20} H i
21 = . : A H M : ; A < . H N s-
bbbt fa b s i g it itailesaai b ey i i ig e it g sqadaa sy

Vertical Lines indicate elements that appear in more than one
cluster.

Many of the elements appear in more than one cluster and this
was addressed in the modified clustering algorithm.

Figure 3: Foundation Algorithm Cluster Matrix - Element to Cluster Mapping

Ronnie E. Thebeau

37

Rowr DEdbUTD; 19D exc 966 NURIL; ToulCoucidiod
Frovue:

$12aVET 56T¢ MIIAVRNDOTIN IRV Do D0 V54616 IV IV TVt TR ST AL C019S4ie

i
B v
.
B kK
o~ . e
A S AR P - . ; S
J g ‘
af 3
L T s >
{ o e
3 B
;: o ‘oz
¥ o - o
¥ e e IR

N
EA

> ,/’(’r' T
e g

Dk

Figure 4: Foundation Algorithm - Clustered DSM

Ronnie E. Thebeau

38

Cluster Mambarkist

Large Cluster —
Many unrelated
elemems

Cluster #1 Cluster #3

Hall Request Indicator (1) gPest m icator (2)
Cluster #2 * e%% nteriggv-Phone (5)
. mer lntercom Phone 6 - tl
ot sipeles (14 IRmins senvee ey O

u"l"f

8ggﬁc%elry?lgeoc Eheck 37) *

ro'\ 3&901

* el co e
%ar I’IJS
ot

. :’:%l’ n n
* Indicates element is a « potl
member of more than one
cluster-

%{gféses Systel

mxejf

gfstem (20)

n

heck (@

ons lllC
: er\nce
Number indicates the entry N F?n
number on the original pre-
clustered DSM .
olle

*

lnsu
sen
rvuce

?é‘

g3
. ensi ystem (
gBZone ?en@o? g45)

* 8(\)/ern0(§Jﬁ

Zé stem (5

(60)

Figure 5: Foundation Algorithm- Cluster List Example

Ronnie E. Thebeau 39

x 1@fustering Cost History; 19-Dec-2000 20:39:33
2 .

Cost

0 100 200 300 400
Change #
Difficult to see in this graph, but due to simulated

annealing, the final cost is actually higher than a
solution than had been previously found

Figure 6: Foundation Algorithm Cost History Example

Ronnie E. Thebeau 40

Results of Original Algorithm

This initial clustering algorithm appeared to have clustered like elements. The size of the
clusters and the number of clusters depended largely on the values of the algorithm parameters.
To get clustering appropriate to the system being analyzed. a lengthy trial and error process of
changing parameters and running the algorithm had to be undertaken. Although the effect of the
parameters is predefined, it is probable that the size of the DSM and how integrative the
elements of the DSM are affect the results. Although time consuming, the process requires that

the user become familiar with the clustering algorithm and the DSM under consideration.

There were some concerns with the results of the clustering algorithm and the fixes to these
problems will be addressed in Chapter S. Two major problems were observed at this point in the
process: 1) many of DSM elements belonged to more than one cluster, 2) simulated annealing

caused the final solution to be worse than a previously found solution.

When the clustering algorithm places many of the elements in multiple clusters, the meaning and
usefulness of the cluster is diminished. If the element is in more than one cluster, it forces
interfaces between all of these clusters on multiple levels. We would like an element to be
placed only with other elements that it is most like. This is desirable for two reasons. First, by
minimizing cluster membership, we minimize the interfaces between clusters in the physical
context. Secondly we minimize the information flow between teams in the organizational

context. Therefore it is highly desirable to minimize multiple cluster membership.

Ronnie E. Thebeau 41

Multiple memberships also resulted in clusters that contained elements with very different needs
and interface requirements. To evaluate the feasibility of a cluster, I made an attempt to name
each cluster based on the members of the cluster. This became very difficult, as cluster members
did not directly interface with each other. There were many cluster members that were from
very different parts of the system with weak interconnectivity. Although it was possible to see
the link between the members of a cluster, the identity of the cluster was weak. For example, a
cluster may contain the power supply, the building structure, safety system and the hallway
fixtures. The building structure and the power supply were linked to the hallway fixture even
though they do not interface with each other. The safety system was only linked to the power
supply and to no other member of this particular cluster. This made this cluster very difficult to
manage as it had very different requirements and the cluster was sparsely connected between all
of its members. In addition to this cluster, the power supply, the building structure, the safety
system, and the hallway fixtures were all members of other clusters where their interface
requirements were much stronger. This type of clustering result was significantly improved in
the modified clustering algorithm. The modified algorithm forces clusters to contain members
with a high degree of connectivity and it significantly reduces or eliminates multiple cluster

membership.

The second significant problem was related to the simulated annealing. The simulated annealing
caused the clustering algorithm to make less than optimal changes. In the bidding part of the
algorithm, the routine would randomly select the second highest bid instead of the highest
bidder. This would result in less than optimal changes if the second highest bid also improved

the coordination cost.

Ronnie E. Thebeau 42

The problem related to the simulated annealing actually resulted from the part of the algorithm
that decides whether or not to make a change. In this part of the algorithm, a change would be
made (1 out of rand_accept times) even if the change did not result in an improvement in the
coordination cost. The purpose of this part of the algorithm was to prevent the algorithm from
getting stuck in a local optimum. Unfortunately, the when the change was made, the algorithm
did not check that the change finished at a coordination cost that was better than anything that
had already been found. Therefore, the majority of the runs resulted in a final confi guration that

had a higher total coordination cost than a solution previously found.

Chapter Summary

The initial clustering algorithm developed in the Fernandez thesis was evaluated for use in
developing the elevator system architecture. First, the algorithm was coded into the Matlab
environment because of Matlab’s capabilities of working with matrices and its significant data
analysis capabilities. Then the algorithm parameters were developed to obtain clustering results
that were appropriate for the elevator problem. The algorithm results were promising but did not
provide consistent clusters. There were two significant problems. First, the DSM elements were
often members of more than one cluster, which made it difficult to understand how the element
could be managed or designed appropriately if it was a member of more than one cluster.
Second, the final solution that was reported by the clustering algorithm was not usually the best
solution that had been found by the algorithm. These two problems will be addressed and

corrected in the next chapter.

Ronnie E. Thebeau 43

Chapter 5 Modified Clustering Algorithm

Introduction

The results of the initial clustering algorithm developed in Chapter 4 did not provide an adequate
answer for developing a system architecture. There were two main problems. First, the
clustering results often assigned elements tc inore than one cluster. This can be confusing when
developing the system architecture or assigning the element to a design group. This will be
addressed by adding a cost penalty to the assignment of an element to more than one cluster.
The second problem to be addressed is with the solution that is reported by the clustering
algorithm. The algorithm would often report a solution that was not the most optimal solution
that had been found. This is caused by the simulated annealing portion of the algorithm and will

be address by forcing the algorithm to save the best solution that it has found at any time.

Penalize Cost of Multiple Cluster Memberships

The first modification to the clustering algorithm was to prevent the algorithm from placing a
large number of elements in multiple clusters. A few different schemes were evaluated for
modification of the algorithm. The first scheme was to force an element to be a member of only
one cluster. In this scheme, after the bids had been made and calculated, the coordination cost
would be calculated for two different configurations. In the first configuration, the coordination
cost would be calculated for the configuration where the element was a member of its current
cluster. Then the coordination cost would be calculated for the configuration where the element
was a member of only the new high bidder. The two coordination costs would be compared and

the lowest cost configuration would be chosen. In this scheme the element is only a member of

Ronnie E. Thebeau 44

its current cluster or the new cluster. This would ensure single membership in the clusters. After
reviewing the alternatives, the first scheme was not implemented in order to pursue the following

scheme.

The second scheme, which has been implemented, was to develop a modification that would
remain consistent with how the algorithm evaluates changes and clusters. The modification
would penalize, or add cost, to a solution that made an element a member of more than one
cluster. This was accomplished by recreating the DSM after every modification. The DSM
would have en entry for an element every time the element showed up in a cluster. This
modification was also consistent with the method chosen to graphically represent the clustered
DSM. For example, the DSM in Figure 2 is the original DSM. The clustered DSM in Figure 4
appears to be much more cluttered because every element has an entry for each cluster of which
itis a member. If an element were a member of 3 clusters, the element would be represented in
the new DSM 3 times, once for each cluster. Therefore, each additional entry of the element
increases the size of the DSM and the number of entries within the DSM is increased. This
increase in the DSM size, and the additional DSM entries, increase the cost calculation. With
this new approach for costing multiple cluster memberships, it is still possible for an element to
be a member of multiple clusters, but it does so with a cost penalty if it is not an optimal
solution. With this modification to the algorithm, the routine is still trying to minimize the
objective function but because we believe the multiple memberships is more costly to implement

or manage, it has been represented as such in the cost calculations.

Ronnie E. Thebeau 45

This change immediately improved the results of the clustering algorithm. The results shown in
Figure 7 through Figure 9 have been run with the same DSM and with the parameters previously
listed as the final parameters in Table 2. Notice that this has significantly reduced the number of
multiple cluster memberships. In Figure 7, only one element is a member of multiple clusters.
in Figure 8, we can notice that the clustered DSM is much cleaner than what was observed in
Figure 4 before the modification. The cluster sizes are also closer to what was desired. This
change was a significant improvement, but as can be seen in Figure 9, the final solution was not
the run’s best solution due to the simulated annealing. The simulated annealing caused the final
solution to be less optimal than one of the intermediate solutions. This will be addressed in the

next section.

Ronnie E. Thebeau

Clusler Matix, R19-Dec-2000213116
Bement

012345678 9|0|||2|3|415161716‘920212223242520272!2!303‘323334353657383040“42434445~L’"4045505152555‘5556575559005‘ 0

°llllllilllllllllllllllllﬂIlllllllllllllllllTllIllllllll TTTT
V= - S -
2 b -
I e -~ -
b - n
s |- -
6} H -
7P et
E]

=

2

C s N .
o= .
10 = -
1 = -
2 -
EY -
14 - g
s bl Ll Ll Ll 1 b0 LA Lt b3 18880t 1§aaysraaarat it staaizsay

Only one multiple cluster

Figure 7: Cluster Matrix with Multiple Membership Penalties

Ronnie E. Thebeau

47

New DSMMavix, #19-Dec-20002131 18km, Total Cost 18841

Etement
0 9 143234445152101955111218212620 1 7 1543454647 2256242528 364250573558 1737382339 4 162030334048 134149595364 2 8 5 & 82760315761 0
LI B N I O B B OO B B B B N BN B B PN B I BN B O BRSOL N B B N B B I B L ISR N I

I HA TSN ISR ENINENNEENE)

o
EEEN ° . PR N
" ;
I3 "
% &
S y .
P KINEN
4 &
2 ae s % w 4o
s o
- - Ao
E 2 5
& .
3
=8 P B -
- p
-

& an Boad L.

v § - ey
°7llllllllllllIIJ_LllIl]lJ‘llllllll-"lllllllllllllj;llIlllllllll'

Figure 8: Clustered DSM with Multiple Cluster Membership Penalty

Ronnie E. Thebeau

1@fustering Cost History; 19-Dec-2000 21:31:16
2-2 1 i L)) Ll 1

bad

2.1

Better Solution

The final solution has a much
higher cost than a previous
solution

1.8

1.7F

1.6 : : -
C 50 100 150 200 250 300 350

Change #

Figure 9: Cost History with Penalty for Multiple Cluster Membership

Ronnie E. Thebeau 49

Save the Best Solution

As observed with the prior examples, the final clustering solution may not be the best solution.
In both of the previous examples (Figure 6 & Figure 9), the final solution had a higher
coordination cost than some other solution found during the run. The simulated annealing
algorithm attempts to ensure that a solution has not gotten stuck in a local optimum by randomly
making changes even if there is no improvement in the solution. It is ironic that because of the
simulated annealing, the final solution is actually a solution that gets stuck at a local optimum

that is worse than a solution that it has previously found.

Once the algorithm made the change that resulted in increasing the total cost, the information
about that lower cost was lost and basically forgotten. This was a basic flaw in the flow of the
algorithm. To solve this problem, the algorithm can save information about any best solution
that has been found. Then, before any change is made, if the change is going to increase our
total coordination cost, the algorithm saves two pieces of information. The first piece of
information is the value of the lowest cost solution that has been discovered. The seconc. piece
of information is the cluster matrix that produced the best solution. When the algorithm thinks
that a solution has been found, it then compares the cost of the current solution with the cost of
the best solution. If the current solution cost is equal to or lower than the best solution cost then
the run is over and it reports the current solution. If the current solution is greater than the best
solution, then the algorithm replaces the current solution with the best solution and continues to
try to optimize the clusters (beginning with the best solution). The reason for continuing is that

the simulated annealing process may have interrupted the best solution before the optimization

Ronnie E. Thebeau 50

process had finished. Once the solution has a final solution that is less than or equal to any best

solution, the run stops and reports the results.

Also, because of the simulated annealing it may be possible to get into a loop where the
algorithm goes back to the best solution and then jumps to a high cost solution, thinks it is done
but has to return to the best solution again. Because of this possibility, the algorithm has a
parameter to set how many times it can think it is done but have to loop back. If the algorithm
reaches this limit, then the reported solution is the best solution that had been found up to that

point.

This change did result in reporting the best solution that the algorithm was able to find. It also,
however, increased the time to run the algorithm because it sometimes had to go back to an
intermediate solution and continue the optimization process. The typical run time increased from
5-10 minutes™ per run to 10-30 minutes per run. Figure 13 contains an example that shows the

cost history jumping up and then jumping back down because it did not find a better solution.

Once all the changes were made, the new clustering routine was run on the DSM with the varied
interaction strengths (see Chapter 3, section on “‘Enter the DSM Interactions’ for explanation of
varied interaction strengths). The added value of the varied interaction strengths is that the
clustering algorithm will weigh strong interactions significantly more than standard or weak
interactions because of the exponential nature of the equations. Because the bidding and costing

algorithms (discussed in Chapter 4) use the DSM entries (interactions strengths) in their
)

" Calculations performed on a laptop with 233MHz processor

Ronnie E. Thebeau 51

calculations, the interaction strengths affect the final cost totals calculated in these algorithms.
As will be discussed in the next Chapter on the cluster analysis, the results of the clustering
algorithm are better and more consistent with the varied interaction strengths. An example

clustering result using the new algorithm is shown in Figure 10 to Figure 13.

DSM Matix, 419-Dec-2030 218101
Element

01 22345067 8 9101112131416181718192021222324262627262903071323334353837 38354041 424344454647 484850515253545558 5758506081 0
",_‘lllll‘llllll P Y TVErrvryrory rTrrrrrrrrrvrrysTrIiveyrigT ey rarTrvrrgyivy
[i d > * § i * * -
3 * . o -
4P * : * =
5 f * § * . * -
s b . o
'8 o L 3 * + -
s r- o -
‘; - ee oo .o * & ce0e 00‘ 000 s ° 9
s e co ¢ o 3
::.\ - 0. > *ee > o=

F]
:; re o « o o ‘:x’ - * 000000 9]
v R =
18 = * * -

E e
» L 0. * . 8. L 3 -
2k . o * . 3
iF 3 © 3
zF . & 3

C 3
BE * $ vop e o 0338 % oee 3
2 b 2 J - * -1
27 b 9900 134 9
P~ : z * -1

- P . 3
3 i F . 0. > ::
2k * e3¢ *. * o3
34 - * + * * * o
g : ° L N L d ’. ° * .o 0:
a7 b +« o =
2F .o * PS $. et e 30‘ 00“3‘000 =
Wl o eee 0O , @ eco O * ooe coP oo L XX ¢ *
s Y ’ o o
g - i * o > - =
a4 3 * -
Pry - -
. - o -
sE oi ‘e 3
40 P * * o o
ﬁ o g L 2 .,]
sF ‘13]
3 ¢ 3 * L4 (=
86 = * * . =
87 = * * LR XD * - [an
S8 = L] . LI N 2 . L 2 0: * * :. L
85 = * * * o
e seee ¢ o . e . - z.-
0",- IlillllllllLJlllllllLllllIIlllllllllllllllllllllllllll']l ,-

The size of the entries in the DSM corresponds to the interaction strength.
Large =2. Medium = 1. Small = (.5

Figure 10: Elevator DSM with Varied Interaction Strengths

Ronnie E. Thebeau

52

Custm

Chuster Mavix, #19-Dec-2000 2 5101
Bement

12345678 0101112131416161718102021222324252027202930313233343536837 383040 41 424344454647 484950561525364 565667 68506061 0

LULSILASL LI IO I L O B B B L L D NN NN A N AN BN BN A B AN B BN A BN A NN I B NI A N N N NN N D O R NN A A O BN NN

o ’ -

LA AL b a1)21 2 b 0 8 Q4 A0) a8ttty tireeses1t ot tries

Figure 11: Cluster Matrix of DSM with Varied Interaction Strengths

Ronnie E. Thebeau

53

Bement

S2LRUBAEN . BANITBLRBYBINEAS IG5 00

3idooaun

oZRBELRZ2BHBLREERIZ

o

3

.
.
.
*
$
L 4
*
.
*

>
L ol
L 4
.
L 4
*
*
L[
* o
*
€ 44090000 00
*
»

New DSM Matin;#19-Dec-2000 2151 014m, Toll Coat 163105
Etement

032101085111217 1547 4822582324202838505152212020 1 7 8273567883138443048 2 3 4 6 6 131416182030333437404560606141424340506304 O

*ee *

.
&
*
.
.
*
*
.
L d
-
9o
*
.
*
*

C H * -
L] s

30 : W 2 . ¢ &

- * L R4 L d £ d L3 *

= * * *e * . . * :'0

C . . e m . ¢ 60 o, 0 “eo0e

E 3 *°

Co . e

- ¢ * ‘e :

= b4 o, 3% i bt

o . :

= . . B o .

o . i. PS

Fo * o’o‘ ’ .

-

- . ’ L4 .

¢ . . e T I
[O+Qe e 00000 - *® 0000'0 LY X 3‘00 >

: * * . see @ (3 * - L]
F ¢ . ' Vg 3y ¢
- ‘ .o -

= b2 2 4 §
C * hdhd o
)-lellllllllllllllllllllIllIIllllIlllIlllllILllllll IEEEEENEL <)

Figure 12: Clustered DSM with Varied Interaction Strengths

Ronnie E. Thebeau 54

x 16lustering Cost History; 19-Dec-2000 21:51:01
2-2 | ¥ 1 H 1

|

2.1 .

Final solution equal
2} to best intermediate o
solution

B 1o -
1.8} Jumps back to older i
' better solution
1.7} '
1 .6 1] 1 \ 1 1
0 100 200 300 00 500 600
Change # Increase because of simulated
I annealing

Figure 13: Cost History, New Algorithm, DSM with Varied Interaction Strengths

Ronnie E. Thebeau 55

Chapter Summary

The problems encountered in Chapter 4 included the assignment of elements to multiple clusters
and the reporting of a solution that was not the best solution found by the algorithm. Two
changes were made to the algorithm to correct the problem. The first change added a cost
penalty to elements that are members of more than one cluster. This significantly reduced or
eliminated the mulitiple cluster assignment of elements. This also resulted in clusters that were
much easier to recognize and analyze. The results greatly improved the possibility of creating a
system architecture from the cluster elements. The second change forced the algorithm to keep
track of the best solution found so that any non-optimal change resulting from the simulated
annealing could be reversed if the final solution was not as good as any previous solution. This
did cause the algorithm to always report the best solution that it was able to find. These two
improvements significantly improved the results of the clustering algorithm. The next chapter

will analyze the results of the clustering algorithm and its implications for the elevator problem.

Ronnie E. Thebeau 56

Chapter 6 Cluster Analysis

The clustering algorithm randomly selects elements for bidding by clusters for membership. Due
to this randomness, every run of the algorithm is slightly different as elements are selected in a
different order and the clusters are built up differently. Therefore one run of the algorithm is not
sufficient to provide an answer to the optimal clustering configuration. Several runs are
required, and these runs will produce slightly different answers. Several steps have been taken to
analyze the consistency of the answers produced by the algorithm. The clusters were also

inspected for feasibility of implementaticn in design and management.

Multiple Runs

To analyze the consistency of the answers produced by the clustering algorithm, several runs
were completed under identical conditions. The data including the DSM, the ciuster matrix, cost
history, and final coordination cost was stored from each of the 10 runs. Then each of the 10
runs was individually compared to the other 9 runs and scored for how well the cluster matched
up with the clusters of the other runs. This provided analysis of the clustering algorithm under
identical conditions. Then parameters or conditions could be changed and the consistency
analysis completed again. This allowed for observation of what different parameters or
algorithms produced more consistent answers. For the elevator DSM, the 10 run set took

approximately 2 hours to complete.

Ronnie E. Thebeau 57

Finding like Clusters

In order to measure the consistency of the answers, like clusters between runs had to be found.
To get the like clusters, the clusters of one run were measured against the clusters of another run.
The like elements between any two clusters were obtained by taking the dot product of the two
cluster matrices. To measure the likeness of two clusters, twice sum of the like elements was
divided by the sum of the total number of elements in the two clusters. The likeness
measurement used two times the number of like elements because the like elements are members
of both clusters.

XinY +YinX

Likeness(X,Y) =
TotalXY

0 < Likeness <1

X =Cluster X of Run1

Y =Cluster Yof Run 2

XinY = Number of elementsin Cluster X that can be found in Cluster Y
YinX = Number of Elementsin Cluster Y that cab be found in Cluster X
XinY = YinX

TotalXY = Total number of elementsin Cluster X and Cluster Y

for all X and Y of both Runs

For example take the two clusters in Figure 14. The cluster from Run-1 has 5 elements, the

cluster from Run-2 has 4 elements. The have 3 elements in common. Therefore the likeness

3+43 3*%¥2 6)
= = —=0.66. Therefore, the likeness score for these two clusters

4+5 4+5 9

measure is

would be 0.66. This measure is done for every combination of clusters and runs.

Ronnie E. Thebeau i 58

Cluster 1 {2 13 |4 |5 |6 |7 |8 |9 |Totalin
Cluster
1 1 10 |0 |1 1 10O |1 |0 |1 |5
2 1 10 /O 10 {0 (O (1 |0 |1 |4
Dot Product |1 [0 |0 |0 [0 [0 |1 |0 [1 [3
Likeness 0.66

Figure 14: Cluster Likeness Example

Once this likeness number has been attained for every combination of clusters, then we can get
the average likeness for a cluster of one run against all runs. To get the number we compile a list
for each cluster of a run. The list includes which cluster it was most like in the other runs and
what the likeness scores were for those clusters. Then these numbers can be averaged to get an
average likeness for the cluster. An example will make this more clear. Let's say we are
compiling the list for Cluster-2 of Run-3. In the example in Fi gure 15, the average likeness was
calculated to be 0.7455. This average is calculated for each of the clusters in every run. These
averages were then graphed in a bar chart as shown in the example in Figure 16. Once the score
for each cluster had been calculated, the average for the run and the average over all 10 runs
were calculated. This represented how well a run matched other runs and how well the
clustering algorithm did over-all. In the example plot (Figure 16), average for each cluster of a
run is represented by the bar, the average for the run is listed below the subplot, and the average

for all 10 runs is listed at the top of the sheet.

Ronnie E. Thebeau 59

1 2 0.8
2 3 0.75
3 not compared to clusters in same run
4 5 0.9
5 6 0.4
6 7 1.0 Best Match = 1.0
7 2 0.86
8 4 1.0
9 S5 0.7
10 3 0.3
Average 0.74555 Average score for
Cluster-2 of Run-3

Figure 15: Example of Cluster Average Likeness Calculation

For the rest of the analysis all cluster parameters were held constant with the following values.

pow_cc 1
pow_bid = 1
pow_dep = 4
max_cluster_size = 61
rand_accept = 122
rand_bid = 122
times = 2
stable_limit = 2

For the elevator DSM with all interaction strengths set at 1 (will be referred to as the standard
interaction strength), the cluster comparison is shown in Figure 16. This figure also explains the
different values that have been calculated. According to the calculations, Cluster-4 of Run-1 has
an average likeness value of approximately 0.8. This means that according to the formula
presented, there is an average of an 80% match between this cluster and its best match on the

other runs. The graph also shows that this cluster has at least one exact match in the other runs.

Ronnie E. Thebeau 60

Run-1 has an average likeness value of 0.70363. Therefore, the clusters of Run-1 have an
average match of approximately 70% with all other runs. This value is important because it
shows how well a run matched up with all other runs. If this number is lower than the averages
for the other runs, then it may have been a bad run. This allows for removal of runs that may

have resulted in significantly different results.

In the same manner, the likeness for all 10 runs is the average of the runs. In the example, the
average for the standard interactions is 0.60649. This means that the average match across all
clusters of all runs is approximately 60%. This number is important as changes are made to the
clustering parameters, clustering algorithm, or DSM data. This number can be used to compare
how consistent clusters were developing across multiple ruris. The confidence in the results
increases as this number increases, because it reflects how repeatable the outcomes are even with

the randomness of the algorithm.

Ronnie E. Thebeau

61

maximum likeness out of the

For all 10 runs

other 9 clusters for this cluster /
Mean: 0.60649 Median: 0.602
1 x :

>4 x i x

<

~ 0.5 - R

c

3

o

0
0 5 10

x

Avg. Likeness for
comparison all clusters

for this run

1|

>

1

P~

15

nClustgrs (tgtal A\“;g: 9.703?3); Coord Cost: 14940

P pre—€

20

Average for the
cluster of this run

0 5 10

5

20

Clusters (total Avg: 0.69626); Coord Cost: 15001

"

25

T

0 | 5 10

T
i
1
H
$

15

20

Clusters (total Avg: 0.59511); Coord Cost: 16418

Figure 16: Cluster Likeness Example Plot; Standard Interactions

Ronnie E. Thebeau 62

Varied Interaction Levels

After reviewing the make up of the clusters that were being developed, it became apparent that
the members of the clusters were not always highly similar nor did they always exhibit high
interaction levels. Some cluster members appear to be connected to other members either
through interactions that should not have been driving the design, or they were driven together

through indirect connections.

In order to help the clustering algorithm identify which elements had a higher necessity of
interconnectivity, the interaction levels in the DSM were modified. As previously discussed,
weak interactions were represented with a value of 0.5 while strong interactions were represented
with a 2. A strong interaction was defined as an interaction that was highly important, critical to
operation, or was not optional. Weak interactions were defined as those that were not critical to
the design of the system, that were a result of design choices but may be modified, or
interactions that were not critical to the operation of the system. When these interactions were
raised to a power in the clustering and bidding calculations, it gave strong interactions much

more weight.

This change produced a more consistent clustering result. The strong interactions drive the

clustering and the weak interactions have little value unless no strong interactions are present.
By valuing the interactions in this manner, the clustering algorithm was able to understand the
importance of an interaction and value it accordingly in the optimization calculations. This is
especially important because there is no way to represent the interfaces or interactions that are

prohibited or not desired.

Ronnie E. Thebeau 63

Extraction of Integrative Elements

Another observation of the clustering results is that the DSM elements that were integrative
across the DSM drove integration of some of the clusters. These elements either had a large
number of interactions across the row, column, or both. A few of these elements were in the
DSM for documentation purposes. For example, the service person and the load do not need to
be considered for the clustering purpose, but they do need to be represented to show the
interactions that they may have with the design. If we re-examine the clusters that were
produced at the end of Chapter 5, there were two clusters that were driven by elements with
many interactions. The cluster results have been reproduced in Figure 17 with the two
integrative clusters circled. Upon closer examination of the clusters, it becomes clear that the
clusters formed around the element with many interactions. The other elements within these
clusters do not have many, if any, interactions with each other. In the large cluster, it can be
noticed that several of these elements are highly integrative with the elements of the cluster.
These results produced clusters that were mostly related through the integrative element. Once
again, if the cluster was evaluated by atiempting to give it a name based on the cluster members,

it was difficult to do for these clusters because most f the elements appeared to be unrelated.

Ronnie E. Thebeau 64

New DSM Matix, £19-Dec-2000 2151 014m, Toll Cost 163105
Eloment

0 93210105511 121718474822502024252036508152212620 1 7 8 273567583138443046 2 7 4 5 6 131416182030333437 4045606141 424340596354 O

|lllllll‘]lllllllIllIlI“‘l‘ll“llll—“ltlll“‘l ‘I‘li““'r‘
‘e t.

2

Borman
R BB 2B R RN arsun Sl B R N BN CBRRRVNENANGIS2EE5 0o
* e o

.
*Pe o ’oyoo . 000000 (XX

e 0ee o

*
)

3¢ B

L4 too
NSNS AN NN UL AN RNEE: * -,

!llrlll“l;l‘llzlllllul‘lllllllz‘ll]lll!llll

Lol L1 st 503110332l

Circled clusters are driven by elements with a large number of interactions
along the row or column with little interactions with other elements.

Figure 17: Clusters driven by Integrative Elements

To alleviate the problems caused by these elements, the algorithm was modified to allow
removal of them. They were removed for clustering purposes only, but were re-introduced into
the clustered DSM on the outside edges. This process also improved the results. The
improvement can be shown in several areas. First the likeness measurement showed remarkable
improvement in the scoring as these integrative elements were removed for clustering. This
meant that the clustering results were becoming more repeatable with the removal of the
integrative elements. Secondly, the graphical view of the clustered DSM (Figure 18, nage 67)
showed most interactions were residing within the clusters with the exception of the elements

that had been removed. And lastly, it became much easier to name the cluster elements.

Ronnie E. Thebeau 65

Some conclusions can be made about the elements that were removed. For instance, the travel
cable is actually the physical implementation of the interface between the cab and controller. At
this point, it’s the knowledge that the cab and controller require an interface that is important, not
the implementation of the interface. Also, by representing the interface between the components
of the cab and the controller, while including the traveling cable in the DSM, the interface has
essentially been represented twice. Therefore the travel cables were removed for clustering

purposes.

The service person and passenger load elements were included in the DSM mainly for
documentation purposes. It is important to know what elements these two will interface with,
but because of the number of elements that they interface with, they do not add much
information to the clustering routine. Once clustering has been completed it is actually more
important to identify what clusters the passenger load and the service personal will have to

interface with.

The cab already represents a cluster. The cab is made of individual components that interface

with other components. Without decomposing the cab another level, we have forced the cab to
interface with many items. This situation resulis in clusters that would cluster with the cab but
wouldn’t necessarily cluster with each other. If time allowed, it would be better to decompose

the cab even further and run the clustering algorithm again.

The power supplies were represented as a single clement with reason. In reality, most

components or subsystems have their own power supplies or share a power supply with a few

Ronnie E. Thebeau 66

other items. By implementing the power supply as a single item, we can reconfigure the power
supply to meet the clustering architecture. Therefore, once the clustering algorithm is completed
the power supplies could be broken down to fit neatly within each of the clusters, or each cluster
can have responsibility for a section of the power supply that interfaces with their cluster.
Important information may be extracted by representing the power supply as a single element so
it may be better that the power supply is not included in the clustering algorithm. The power

supply was a frequent cause of clusters that didn’t contain elements that were directly related.

The motion controller and safety system also caused some of these problems. In the last stage of
removing elements before clustering, these components were also removed. These components
interface with many of the elements in the group and they represented several functions. Again,
they were removed for the purpose of analyzing how well the clustering performed in the
absence of their influence. These components and their interfaces are important in the
architecture of the system and management of the organization. If time allowed, the elements
should have been decomposed even further to get at the functions that make up the motion

controller and safety system.

Ronnie E. Thebeau

67

220-Dec-2000

Element

Tomi Cost 185958

0 16244344454748 1 3 4 7 82721262933 101920553557 5022235611287 5354 4959414230946 § 1613321217 2 6 8180525150403036343130251614 9 ©

< PP EETTY -
24 H . * .
R .
pra o2 ¢ , i
. .
: “ i : i.
5 o . o ° ®e ®
. P *® . * i
e : o0 .
DI [
: . I | :
> * .0:. K* 0.0 t ¢ : i :
2»; > LK X N 2 . [000 * e > > ’ *
i }zﬁ . . . *
i1 * ¢ @ gu . L
: $ R
li . SIS
9 13 o
: . e [soe
§§ * ‘ &"1 * Q:
10
13 * & ¢ Y .z z
3 P * 5% b
17 M 4
; . : & ERE RS
80 . *e 0 * * * * * * ol *
2 $
)
______ri mtt AU L 2044 G o 00, 230,790 [0 B *ede®
(X * "1.1 *
* «d
f L0000 o & 06 *® 'S 'S ° ooozoooo

14 &]
H I TN I AL I SN ETE RN L SR ANE SR AL SUNEUL JAR IR IR .-,

System elements

T

Figure 18: Cluster DSM with System Parameters on the Outside

The extraction of system or integrative parameters is not a new idea. It is common practice to

move DSM elements that have many entries along a row, column or both to the outside of the

DSM, while keeping the clustered elements in the middle. A discussion of this in the context of

design parameters is discussed in detail in a thesis on the application of the DSM on Jet Engines

(Bartkowski)" and the process is shown in Figure 19.

* Includes discussion on the importance of sequencing and knowledge management for System Level parameters

Ronnie E. Thebeau 68

Non-Local Knowledge: System-to-Component (Distributed)

“/ System Requirements/Stakeholder Needs \‘

Non-Local Knowledge: System-to-Component (Modular)

\V 4
Component
(Modular) r
Parameters W
Local Knowledge: Component (Modular)

Component (Distributed) Parameters
< Local Knowledge: Componeat (Distributed) >

Figure 19: P& W Distributed and Modular Parameters®

The system elements are generally elements that have interactions throughout the system. In
many cases, the system elements cannot be decomposed further and therefore they have a
significant influence on the system and its components. Since their influence in the system is so
great, it is desirable to have the elements managed by a systems organization that maintains

contacts with all of the design groups and has no stake in any of the components (modules). It

Ronnie £. Thebeau 69

would be difficult for any group or component to own the system elements since they require so
much information and require interactions with so many other parts of the system and
development organization. This idea holds for both the design parameters as discussed in the
Bartkowski thesis and the physical elements in this elevator problem. The system elements
require special attention and are usually managed by a group that is void of component design

responsibilities.

Chapter Summary

As previously discussed, the clustering algorithm randomly selects elements for bidding by
clusters for membership. Due to this randomness, every run of the algorithm will produce
slightly different answers as elements are selected in a different order and the clusters are formed
differently. Therefore one run of the algorithm was not sufficient to provide an answer to the
optimal clustering configuration. Several runs were made and the results were analyzed for
consistency. A few measurements of consistency were developed and the likeness measurement
was used to evaluate different clustering options and DSM configurations. The results showed
that clustering is significantly improved if the DSM interaction strengths are varied according
their importance in the creation of the architecture. Also, the elements with many interactions
were removed as system elements because they would cause creation of sparsely populated
clusters that were related only by the system element. These changes significantly improved the
results of the algorithm and resulted in clusters that could be used to define an optimally

configured interface architecture.

* Bartkowski Thesis, pg 47

Ronnie E. Thebeau 70

Chapter 7 Results Summary

Cluster Analysis

As outlined in the preceding chapter, the enhancements to the algorithm greatly improved the
consistency of the results. The enhancements included adding the varied interaction strengths,
and the removal of the integrative elements. As shown in Table 3, the results improved when the
standard interaction strengths (all interactions valued at 1) were changed to represent their
perceived strengths. The greatest improvement resulted from extracting the system parameters
before performing the clusiering routine. These system parameters interfaced with many of the
elements within the DSM and confused the algorithm when it was looking at the interaction

strengths. Trial #5 resulted in very consistent clusters throughout the 10 runs and an example of

the clustering results are contained in Appendix E.

alysis Results
SRR > Ty B TR o o

1 0.60234
2 Varied Interaction - 0.62796
Strengths
3 Extracted elements to | Travel cable comm. 0.72789
System Parameters Travel cable power
Service Personnel
Pass. Load
4 Extracted elements to | Trial 3 removed elements plus 0.7781
System Parameters Power Supplies
Cab
5 Extracted elements to | Trial 3 & 4 removed elements plus 0.84319
System Parameters Motion Controller
Safety System

Ronnie E. Thebeau 71

System Elements

The extracted elements represent system parameters, already clustered elements, or design
decisions. These will be discussed with an example from this analysis. The safety system is an
example of a system element, the cab is an example of an already clustered element, and the

power supply is an example of an element requiring further design decisions.

The Safety System parameter was extracted to the outside edges of the DSM and not considered
for the clustering routine, it is an example of a system parameter. Many of the systems,
components, and development teams must include some part of the safety system. The
extraction says that the safety system should either be managed by a systems organization, or
carefully decomposed to the interfaces that each of the clusters must interact with. This
represents important information in the design of the architecture and management of the product
development teams. The process of deciding to extract the parameter as a system parameter
provides information itself. To extract the information, the user must understand that the
parameter has many interfaces that can cause the erratic clustering. This understanding will
force the user to make one of three decisions. The parameter can continue to be treated as a
system parameter and it can be managed by a systems organization. Secondly, the parameter can
be managed by a systems organization, but be will be broken down into the parts that each
cluster will interface with and that part of the system parameter will be delegated to the cluster.
The third alternative is to further decompose the parameter into its sub-elements and then attempt

to re-cluster if the number of interfaces per element has been reduced.

Ronnie E. Thebeau 72

The cab is an example of an element that already represents a cluster. The walls, frame, floor,
aesthetics, and structural parts of the cab are all represented by the cab element. Therefore many
elements interface with the cab. Again, the extraction of the element represents important
information. Once it is recognized that the cab has many interactions that interfere with the
clustering algorithm, some design decisions can be made. The cab can be further decomposed
and then the clustering algorithm can be used again. This will allow the cab elements to either
be clustered back together or it may be redistributed into different clusters if that produces a
more optimal solution. This has the potential to reconfigure the architecture or create alternate
thinking about how the cab should be developed. If the cab element remains integrated as a
single unit, it may be useful to segregate cab design management into a cab manager and cab
interface manager. In any instance, recognizing the cab as a system element provides valuable

information.

The power supply was purposely represented as a single element in the DSM to understand how
it would be treated in the clustering algorithm. As with the other system parameters, the power
supply weakened the clustering results and needed to be extracted as a system parameter. This
system parameter was valuable after the clustering had been performed. Now that the clusters
have been developed, the clustered DSM can illustrate two pieces of information: 1) it identifies
the clusters that the power supply interfaces with and 2) identifies the elements of the cluster that
cause the interface. With this information there are several options to consider. The power
supply can be separated and distributed to the clusters that interface with it. This can provide a

design for the power supply system architecture. The power supply can also remain a system

Ronnie E. Thebeau 73

element and the architecture could be developed so that the new DSM has defined the interfaces

between the power supply and the clusters.

Although the system elements have not been included in the clustering algorithm, they do
provide valuable information. The process of extracting the elements causes the user to identify
the elements as system parameters and understand the implications of the extraction. The system

parameters also represent design decisions that can be evaluated once the clustering is complete.

Clustered Elements

The clusters represent groups of elements that should have a relatively high level of interactivity.
The objective is to maintain interconnections within clusters so as to minimize the cross talk
between clusters and between development groups. In the case of the elevator DSM, the clusters
did represent recognizable groups. At this time, neither the DSM nor the results are at a stage
where concrete architecture or organizations can be developed, but it is starting to show some

results,

For instance, using the new algorithm, varied interaction strengths, and removal of system
elements, the clustering produced 10 main clusters of elements and 15 clusters with only one
element(which included the eight removed elements). An initial attempt to recognize the clusters
and develop a system from the clusters is shown in Table 4. Higkiy interactive elements are
contained within each cluster. The clusters can then be grouped together to represent groups that
have similar functionality or requirements. This can be useful for system architecture or

organization of product development teams.

Ronnie E. Thebeau 74

The clustered elements in Table 4 create a system architecture that is similar to the current
system architecture with a couple of exceptions. For example, the clustering produced a cluster
thzt contained the operational controller, hallway fixtures, and car fixtures. At Otis Elevator
Company, a group responsible for fixtures typically designs the fixtures and a separate design
group designs the operational controlier. The clustering algorithm recognized that there are
significant amounts of information that must flow between the fixtures and the operational
controller and it has grouped them together. By keeping these design tasks and systems separate,
the teams must communicate often and efficiently. Any miscommunication could result in
design errors or delays. This result does not mandate that the system and development teams
become organized this way, but it does allow the systems architect, engineers and managers to
make an objective analysis and informed choices. Once again, the elevator system DSM must be
much more complete before concrete conclusions can be made about the architecture and results,
but this process is providing promising information. Also, it is apparent that the clustering
results are affected by the input, therefore careful consideration should be made about the DSM

entries, the interaction strengths, and their meaning.

Ronnie E. Thebeau 75

Grouped modules to

make sub-systems. Grouped clusters to

ake mpdules.

Grouped Sub-systems .
Name given cluster based

on its members.

to create the system. /

y

Elevator System

’/ Table 4: Cluster

Electrical Systems

Motion

ined Syst Tl}/

Mouon Sensmg

Hallwa) leturu *
Building Structure
Learn Function
Terminal Sensing System
ETSD Sensor

Door Zone Sensors
Terminal Buffer

NTSD Sensot
Motion Control Motion Controller
Mode Limiting Emerg. Gen Signal
Sensors Building Sway Sensor

Earthquake Sensor

Top of car Insp. Pancl

Power Supply Power Supply Power Supplies
Operations Operational Hall Request Indicator
Control Car Request Indicator

Car Fixtures

Hall Buttons

Car Buttons

Fireman’s Service Key
Operation Controller

Electnical Power

Electnical Dnive

Drive Power Section
Building Power

Brake System
Electrical Drnive Control
Primary Velocity Mcas
Construction Ctl Panel

Health

System Health

Service Tool

Sccondary Vel Check
Diagnostics

Remote Monitor System

Safety System

Safety System

Hotstway Systems

Mcchanical Power
Control

Mechanical
Motion

Ropes

Motor

Counterweight
Compensation System
Brake System

Primary Position System
Ropes/Hitch Springs

Guidance

Cab Guidance System
Guide Rails
Guide Springs Ahignment

Load Containment
System

Load Support

Cab Floor. Plank

Load Weighing System
Mechanical Safeues Sys.
Governor System *

Load Contain.

Cab

Deors

Cab Doors

Door Controller
Hoistway Doors

Access Keving on Doors

Door Obstruction Sensor

Cab o1 ginated
commands

Door Close Signal
Remote Insp. pancel

Emergency
Comm./Power

Emerg Intercom-Phone
Power Storage

Traveling C .ble

travel Cable Power

travel Cable Comm.

Passenger Vent & Lighting System
Comtort Cab Insulauon
Human/ passenger Human' passenger Human Interface | _Service Personnel
Interface Interface Passenger Load

Elevator Svstem Develoved from the Clusters

\
\

Each Cluster
member box
shows a cluster.
Shaded boxes
show system
elements
removed prior
to clustering.

Ronnie E. Thebeau 76

Interactions Outside the Clusters

The interactions outside of the clusters, as shown in Figure 20, represent interactions between
clusters and interactions between system elements and they should get careful attention. These
interactions represent possible architecture decisions where standard interfaces could be
developed. Also, no one cluster owns these interactions. The interactions represent interfaces
between two clusters or system elements. It is highly probable that the interactions can cause
conflicts between clusters and should be managed by a systems organization that does not have a
stake in the interface. The purpose of the clustering process was to minimize or eliminate the
external interactions. Therefore, once the clustering has been completed, a careful analysis
should be performed in order to understand the interactions and decide if further design
improvements can be made to eliminate or move the interface within a cluster. Moving the
interface inside a cluster essentially assigns ownership of the interface to that cluster. Because
each situation can be different, each interaction outside of clusters should receive careful analysis

and understanding.

Ronnie E. Thebeau

71

New OSMMar ix,420-Dec-2000 18 19:564m, TowmlCost 185955
Element

0 15244344454748 1 3 4 7 8 2721262933101920553557502223561128375354495941423046 51813321217 2 66160525150403636343130251614 9 ©

*

;g‘tl‘l'!lllllll]lllLlLl'ilA III‘IIITI"IIIlllllT‘lll‘l‘
i 1 Interactions between the $
4 1 two indicated clusters

1 e * M * §i

3 e L 4 M .

iE * P b

2 b of * L/ . *

;3 M m“ " PS “ > 0 i

k5] M * o -

10 b <o

19 m .

20 - *

gg . * ’o o ¢ ‘o °

57 . “ . b4 o 3 .

58 - ool e . ; Jlo e .o . o * .

aE r& .

ﬂ I NED ’ * . 3 LY
1 e, . .3
: £33 SR

Interactions between the i s o
two indicated clusters . ‘& .; ¢ r see

e 3

B F ukd

3E R LR R @4 P 4

PE =

= b4

61 f *

50 o ce e e o o e o .

il =

SE S8BT 0 c o 3eere S0 0, R28.0.0

34 -

31 b=

%g F 00c0 « & o *® L 4 24 :

‘é:fliffllll||f?l|lfllllflfllllllnnllff:tll? = & I 11

Chapter Summary

The analysis showed that varying the strengths of the interactions within the DSM produced

more consistent results. The results were further improved by removing system elements from

Interactions between a system
element and a cluster

Figure 20: Interactions outside of the Cluster

the clustering process. The systems elements that were removed from the clustering process do

provide valuable information and must reviewed and managed carefully. A review of the results

of the clustering showe:l that interactions within clusters belong to the cluster and interactions

outside of the cluster should be managed by a systems engineering effort since they cannot be

effectively assigned to any single cluster because of the exchange with other clusters.

Ronnie E. Thebeau 78

Chapter 8 Conclusions

Research Conclusions

In today’s environment of changing product requirements, rapidly advancing technology, and
decreasing product development times, products are becoming more complex to meet the
requirements. As the complexity increases it becomes more difficult to understand all of the
interactions and interfaces that develop within the product and product development teams.
Minimizing the interfaces between systems, components and development teams can help reduce
rework caused by misinformation, reduce complexity by minimizing the amount of information

exchanged and decrease the product development cycle time by standardizing interfaces.

To reduce interfaces and interactions, a clustering algorithm was developed and evaluated for its
effectiveness at organizing the interactions of a complex system. A process was created whereby
the system and interactions are represented in a matrix format called the Design Structure
Matrix. The Design Structure Matrix was created from functional requircments derived from a
decomposition of system requirements. The mapping of the functional requirements to physical
elements provided information of how the physical elements were derived. Once the mapping
was developed, and the DSM was created, the DSM was reorganized by clustering elements with

a high degree of interactions.

The developed clustering algorithm provided valuable information that can be used to develop,
evaluate, and manage the system architecture. Although the algorithm produced satisfactory
results, it cannot be used without an understanding of the algorithm, the desired results, and the

system being evaluated. Use of the clustering algorithm requires proper setup of the parameters

Ronnie E. Thebeau 79

that control it. To get the proper parameters, the algorithm is run on the intended DSM and the
parameters are adjusted until the results produce the desired cluster size and number of clusters.
Therefore, the user must understand the algorithm well enough to be able to adjust the proper
parameters to get the desired results. The user must also understand the system well enough to
know the number of clusters that are desired. Although it would be relatively easy to modify the
algorithm to produce the exact number of clusters that are desired, it is much more informative to
let the algorithm produce the optimal configuration and analyze it from that point. This process
allows the user to gain an understanding of the system, understand how the algorithm wants to
cluster elements, and what drives the clustering. This learning process can provide valuable

kncwledge about the system.

To get consistent and meaningful clusters, some elements of the DSM had to be excluded from
the ciustering algorithm. These elements represent system elements or elements that should be
decomposed further. These elements have interactions with many of the other elements within
the DSM. They can be recognized by the large number of entries that appear along their row or
column of the DSM. Exclusion of these parameters from the clustering algorithm produces more
consistent and meaningful clusters, but the exclusion itself provides valuable information. The
system architect or manager should understand why the parameters have a hig. number of
interactions. Then decisions can be made about whether or not to further decompose the element
and re-cluster, assign parts of the element to the clusters with which it interacts, or manage the
element from the systems level of the organization. These considerations provide valuable

information about the system architecture and allow for informed choices.

Ronnie E. Thebeau 80

Finally the clusters themselves represent a way to organize the DSM elements or information in
a way to minimize the amount of information exchanged. Information flow within a cluster
provides an efficient way to transfer information within a subsystem or within a design team.
This is usually the least costly option. Interactions outside of the clusters represent information
or interactions that are not owned by any of the clusters. The clustering algorithm should have
minimized the number of these that occur. These interactions can be costly and time consuming.
Conflicts may occur and design parameters can be unclear if no strong decisions are made.
Therefore, the interactions outside of the clusters should be managed or assigned by a systems

level organization.

This process requires a significant knowledge of the system and its interactions. It is difficult to
produce and manage unless the user has a clear understanding of the process and the system.
Therefore it would be highly advantageous for this to be completed by a team of experts or
systems people that have knowledge of the entire system and can solicit information from
required experts. In this simplified elevator example, the process forced the questioning of many
of the design decisions as the DSM was created and the interactions were entered in. It also led
to a new understanding of the elements, their interactions with each other and conditions for
which some elements may not provide easy clustering solutions. The process provided possible
future direction for system development and architecture changes. It will be highly

advantageous to reapply this process to a complete representation of the elevator system.

Ronnie E. Thebeau 81

Future Work

This research provided valuable information with a limited set of data. Although the DSM
represented the entire elevator system, it did so with a subset of the available items that could
have been used. It would be extremely valuable to continue or recreate this process on a more

complete representation of the sysiem

Some conclusions were reached about what can be done with the system parameters that were
excluded from the clustering algorithm. It would be interesting to continue the process by
making some of the changes in the system elements and analyzing the results that are produced.
Can system elements be decomposed and successfully re-entered into the clustering algorithm?
In the power supply example, can a true power supply architecture be developed by distributing
the architecture to the clusters? These and other questions about the system parameters would be

important considerations in future analysis.

When this research began, it was the intention to analyze the clusters in the context of the
scenarios that were produced. Because scenarios were mapped to functional requirements, and
functional requirements were mapped to physical elements, the clusters can be mapped back to
the scenarios through these matrices. How well do the clusters address the needs of the
scenarios? Can alternate clustering based on scenarios be accomplished? This type of clustering
would be useful so that the architecture neatly addresses different scenarios. The hypothesis is
that it may be desirable to have clusters match scenario needs so that pieces of clusters are not

used when a small subset of requirements are needed for a scenario.

Ronnie E. Thebeau 82

This process created a one-to-one mapping of functional requirements to physical elements.
Most of the analysis was done using the physical elements as test data. It would be interesting to
know if the same conclusions can be made if we applied the clusters to the functional
requirements. It should be similar, but what conclusions can be drawn from the clustering of

functional requirements?

It would also be interesting to cluster on different types of interactions or on muitiple types of
interactions. For example, several matrices could be developed to represent the communication
or power interfaces. Then clustering could be performed to produce architectures that represent
the electrical system or the mechanical system. It is also possible that one type of interaction
may be more important than another type. For example, a process may value electrical
interactions much higher than mechanical interactions. Therefore the algorithm could be
modified to cluster based on a combination of interaction types or set to value some type

differently than others. There are many possibilities if the needs exist.

Ronnie E. Thebeau

83

Chapter 9 Appendix

Appendix A Functional Decomposition Example

Provide Safe Vertical Transportation for Passengers and Freight

1 Communications
1.1 Accept user requests
1.1.1 Input Car Passenger Destination Request
1.1.2 Input Hall Service Request
1.2 Provide Status to user
1.2.1 Communicate Hall Passenger
1.2.1.1 Communicate Elevator Status
1.2.1.2 Acknowledge Hall Service request
1.2.2 Communicate Car Passenger
1.2.2.1 Communicate Elevator Status
1.2.2.2 Acknowledge Car Destination Request
1.2.2.3 Provide communication link to cab
2 Move the Load
2.1 Energy Conversion
2.1.1 Provide Energy for Motion
2.1.2 Energy Transformation to Force
2.1.3 Transmit force to containment
2.2 Guidance
2.2.1 Provide Path for Motion in Hoistway
2.2.2 Maintain Cab Guidance in Hoistway
2.3 Support
2.3.1 Support Load for nicvement
2.4 Hold the Load at Destination
3 Control
3.1 Controi trajectery
3.1.1 Compute Trajectory
3.1.2 Control Motioau to Trajectory
3.2 Measure Motion Parameters
3.2.1 Measure Trajectory (velocity)
3.2.2 Measure Position
3.3 Input Destination Target
3.3.1 Process Service Request
4 Load Containment
4.1 Support the Load
53 Maintain Safe Environment
5.1 Isolate User from Hazards of Elevator motion
5.2 Protect User/Load

Ronnie E. Thebeau

84

5.2.1 Determine if safe to move
5.3 Prevent uncontrolled motion
5.3.1 Detect uncontrolled motion
5.3.2 Protect from freefall condition
5.3.2.1 Dezect freefall condition
5.3.2.2 Stop freefall condition

533
6 Service
6.1

Hall passenger:

Car passenger:

Passenger/Load in Building hallway waiting for service

Passenger in Elevator Car

Ronnie E. Thebeau

Appendix B Scenario to Functional Mapping Matrix

A [BlCcIDlEJFIGIH] 1 TUTKR]LTMIN] [o]RISTTJUlVIwWIxX]

<

Overshoot Terminal Landind O

Fail to slow for last landing |©

Obtructed Containment Accd
Automatic Rescue (Recove

Instailation (contruction mod|
Freefall (>110% vel dn)

Ovarspeed Condition

Loss of Power Supply

Remote Inspection
Top-of-Car Inspection
Stant-up (cahbration)
Re-leveling

Overload Condtion
Emergency Stop
Landing Overshoot
Position Meas Failure
Velocity Meas Failure
Manuat Rescue

Earthquake

Acknowladge Hall Service Request
Acknowledge Car Service Request _
Comm Status w/ Hall Pass

Comm. Status w/ Cab Pass , X . . .
Emerg Comm w/ pass L. B X X, X X .. X LLX
Input Passenger Car request
Input Passenger Hall Request
Input Fireman's Service Request
Provide comm link to containment
Xmit force to move containment
Energy Transformation to force
Provide Energy for moticn
Support Load for movement
Transmit power to componen:s
Provide structure to contain sys
Provide Power to Containmerit
Provide Power to System CX XX k L
Temporary Power for Memory . L . . X
Provide Counterbalancing of Containmen
Provide Counterbailancing of Ropes
Hold Containment at Destination
Maintain Cont Guidance in pathway
Provide path for motion in Hwy
Calibration (Learn?)

Compute Trajectory

Control Motion to Trajectory
Process Service Request

Provide Current Position

Provide Trajectory Feedback .
Top-of-car control (inspection) . X
Remote Controt (inspection) . X o . L L
Detect 1f Load is within hrmits X . X X X o . A X X
Contruction Controf . X . o o X R X
Passenger Door Controi X . o X . oL .. UX X X
Access lo view/change sys info . .X . . i S,) X
Determine if on Emerg Power o . . L o X
Detect Uncontrolled Motion) .
Determina if safe to move XX X X X X X
Stop freefall motion

Protect | nad from Hoistway
Provide Safe Load Transfer
Control Access 1o Containment . . o . .
independent end of Hwy sensor X X X X . R

Emerg terminal Stopping Dev . X)
Indep Door Zone Sensing X X X X . XX . X X x x x X
Mechanical Overspeed detection S SO CoUX
Provide end of hwy cushion (bffr) . . X . 3 X,
Detect failure Slow for last landing-NTSD X . . L . i
Deny access to hoistway X X X X X X X X X X X_X_X X_ X X X_ X X X X X
Detect Obstructed Access
Detect Earthquake

Detect Building Sway
Maintain safe/comt load env
Manage Notse

Manage Vertical Vibration
Manage Horizontal Vibration . o
Determine cause of malfunction o X X X
Monitor System Health K o .
provide Service Access to Hoistway X X

> X Fireman's Service

> > X % Normal Operation

> > X X% Building Sway
> > X x Emetgency Power

>

x

x
> X X

bed
>
x>
x X

Jele[feflele]

o

-]

[l

-
w

I

-
rs

l

-
o
X X X X X X

XX X X X X

5

3
MO M M XK X XK XX

X.X > X'X.X.X'X‘X‘
X‘X‘X >('><V>< x X -
x.x'x > X >(<>< x)(.
M OX X XK X X X X
x.x bed X‘X >(.>(.>< x‘x
.x . .
4>(><‘>< x‘x
‘x'x x X‘X-
.X'X‘X.X.X
'X.Xbx.XAX‘X‘X‘X ><~
.)(>(')<-><l><v>< X.IK ~
>(.)<.X X’X‘K x‘x‘x‘
PR x. e e
x x'x-x.x X'X>>(x
.XXXX.XX‘XXX
x X‘)(>)(\X'X
> X X X ><.><.)<‘><.)(.
XXX)()(.)(XIX X'
'X MHX XK XK XK XX >('
PN x. . B

x
x

>
>

2

n
q>< X’X.X =
VX X X X X
-X x x ><’)<
P .x‘

X X X X X
x x'xvx >
X.X o
l)(‘)(x X x
- .>< x)<'><
X‘X'X > x
x ><.><.><
.XVX.X‘X‘X
.x.xbx‘x x
X')(bed X'X
x)(V)(’
v)<)\"X x X
VX.X > » X
XKX X’X bed
x.x'x'x.x.
-><.>(X‘)(x
><.>(XAX-X'

x
>
x
x
bed
> x
x
>
*x
o X

XX X X X X
>

> x
> X

nfrofmofmo[rofro]n
Bl
x
x
>
>

N
Ne)
XK OX M XK X

XX X X X
x
>
K XK X X
XX X X

SEEREEREREE

Py
> X X
>
x
XK X XK X
> X X

[5ls{s(sls]

S
~

x

lelels]

W
x

>

X X X
x X X X
P I 4
X X x>
x X x
X KM
XX X
L 4
X X X X
XX X X X
X X X X

bad

LR[S 3163 [5.316,0 (4,0 {6, 213,}
OlojmiNidinisalwn
MM MK XK XK X

Stop and Shutdown

KX XX X

»x X X

e e e

> ¢ M W

B T

“« oo

ee e e e -
X ok MK Mo K
S

e 4.

e et e e g e .

=

T U

kW W M W W Mo

o
*

Lo o mie e = e .

x

PR
»

-

T
i
1
PN
MORUOD IBUONBIIO0 . 2 (2 X =
'
cor
)

OUHING WO w

»
-«

MO I PARIL e e ¢ 3¢

PR nﬂuﬁwdb,‘ .,.‘

RU0) & Wl

'

SOOLAG U

nueg QS IN

t‘mluubmq-
T awy

1wsaBunsg umf). ’

u-os Awmg Bupnng
w00 qe’

001 anamg
wss§ anmig
ounung w9

UOBIN W (U
aws Qs13

w) Bk vsiy
MG IRENOULIY
S00Q Avmgsnipy
g mumum
WRISAS DURAD)
10365 9007 W0Q
O, S00Q
SRR Sonaes
warehigng fiwjeg
RS dsu e oo
AT AMOR
(B wWawd 1wy wawey
my

134G @ WeDnG Iy
15ks uonwRURALD
B
00e10iG mam0g
MO M»ﬂg‘

Spnng BuIng

wurkd ooy qwg
e 11) 1O10W

y
)

Burlsg Ui sedoy
g BusUOS WuRL® |

HS Buonuop viowey
Psueg LUININO .m;q~
D A ABpuoes
L oavon wasnaswn’
$-ang BunBep ey
b a2 “meug wiowey
koo Airopn Lpuiug
ISAG VOISO Kitwizg
DD BAQ ALY
vyt 0 AARIS SURWAR g
poria s, Brun3

fnshs BumiBir g Jump

FEYFETY™S
i ¥ ¥ » e Y
svmLeac Ny G

" s ARt ey
WM g AN R
AR 18 s wremgy
VRREIA Waer wEaarpy
nxm whespy

T s S URALIAY
s B Rng Jaepeg)
LR G

T ey s naey peng

Arsagsrey (4 v 2 % 4y

051N O 1V Xy woR Lo, Faipel)
CRFL MY ARG F D SN g
RN SRR Pake Ay) SRR Wy
[

G Burtdag, ponuss Laa. 3
Anon A K0 AR psgasa bR

T iaeeumaus o Ty R
R, O OEG AN g

3 ¥ ate ng wig PEe T M|
Ehdad o TR

Akl R BEE , BRLEYT

RO PSEORS SR R0y
L L P AU I Wt

B chs BB S DY

) 2 20 Bhamsey
KR 12 KA

WA SR S Y g

Fag Balsa §.aW) SRS
e R Sl T Y
Ry Ak L, i
AR FIRAIAT G i

Ity 3 WA, IRTX g
Tisnml., & o sy
faxwle. ; A

1w e

el & AL Ky WS A
APanSET o v KRG 1Y) U

: HFUGID ¥ RIS, [
wadoy P o anrsnoes
)). ey
3 T snrimg ds,
warnlg o e]

BRI 3 g

Ty X UAS UBnUD s A g T A
T i o Jed sy |
ERSAL 2 R K

: W Abwu]

S N EgRLrgsue, | (Baey 3

JUO” RARL AK5 B

PERLUNER KT WA, uANT

oy § URueay s

T bow se v

ey ®2 SvEg e

seed e wawo] a3

x ' W - UG W)

“PPr PP PP PEFPEPPERPRRREREREEREE AR ERRF b E EFE R R RREREEE

amn g i)

B__mrmv%mmmuﬁﬁ%mﬁwgé%é%&%é&%% bvbvhvBvivb %ﬁ_:x_;_iw_:m_EoEo?E_ﬂ [rivijH{ol4{3]a]

X « BTRMG UmT
T T T beh s e e
R X lupesas gy Oy
m F z
¥ %
£ 5 ;
= i
A
g€ 3
ig i
gz
ol8] v

suiddepy [eaisyg o3 puonpuny) xipuaddy

neaqay] g Auuoy

X X : i . Ing wramy
' o i . o : T Txl L X a2 x x oy bty
23 b 0 By sy
" wass Buucnnioy wwaizers
S nuabeg]
by e avthasss, arann)
whuats, wise SRy

t
‘
‘
+

8EG Qb IN

2eyng ks |

P SN
[Ty R T
SAWE 0513

srinsAG Duovis, Rt
B sy KRR

oG Q9D

e . e e
P

MW oW W W m

=
x
"
=

-

M X M WM

»x
>

wares At eaep Lanarog
g KR Sasor Aousbisny 3
B, 3 g

urnng a3)

BURG BT NGRS
watitdeng Bunsesm pamey
T omueg En 00N Gk
Burg §T 06 R OO0
ooy XA Loy
LARSAG T A Mg
KT WOUR VA
"B wAuG HERERKY
“x : . T mwaxryewn
:)))) [V S S TVARS VRN
vy WO

tareh G, O AR
GRRYAG s

_sepAS aogrbAKiLID
[T
abesas s
sy Bgug

| sy en_ pan.,
X, x X wrenss Buppng
WING Ao
OO (D

W WG Ko A
Tx : ’ (SRR, Rl O BBl SROR
X) T e i ey

T x xox LT mel ks busean
X Ay 8 NANAG FURGR B 5

D S suang 1|

FFFFFPFPFFFFFFFF#PP#FFFFPFEP

x wix

=

S e e

[l
.

X om W MW R M

o
O I T

»
o xR

=
B3

~

,

e
i
N
s

»

x

e e .
»
v

l
i

C e e e

'
i

-
.

P T T e
S T T T
+
e -
'

i
SI.K-K.’()-(‘x

. X x| Wy leegwn
X ¥ . ¥ oy wo cavosns sty
X ufep ger g g

e

MO BRIRD BARIL b e x

'
B
i

NG Mg ¢ x

FS T

T T e T

o

© e e e m e emm e b

GnI5NAS BUNE

a
e h e e e

N
maBwaseiunor)

*FP%FFPFFFFbFF?FFPPFkFFkFFkaFFFPF

Qv

) ke M40 Uy DY

AnD v RS
wasoubaigq

SHEps SO0
wonng e

$2000)
WO IS
amng w0
g 190

RO nboh'ﬁld‘,(',‘
waEIr YD
0OQ ARSI

oswes OS

Bung WU
WHSAS OURAOEG
ARG 0S5 3
amonuon w00Q
PRI 08O
waishg ."'s.
adnng nnod‘
mmag Cupnng
WiRKL K00y M‘
gy femgen

SBUNIC G niny SOy
KAUSG AUmG Buping
KRUMG warntyv
SHAUG B0) u-:-q.)
wolsAsgng Aareg
ln;\h{{l'ha;ﬂnwg
uoling esor) KKIO
18 10w) v uea]
Laishg uompeuadwon

WRROOR TGRS

l

4 00 Burkay mrnv'
Bav peisBuirts apng
ws N0 K

5 nueA Unpurs

K007 FUOADRAO e ix X
WL NG B BALG

§
:
H
:
L

o nD wisui euuo»_q
b 10 dsup w000
Jevopy Aow A Lmuud'
bisis wonrog fewig
DAu0) BALG [T
fuaisAs @weminD 080
koo RANG SUBION 4
brug ety Bourl

1
i
i
H

keinds Bunubes g 1A
luig Buueg eumm

s Buuiuny, siowiy

pots

§
i
i 5
, : g
M|r

::Em Jofd]oINIw _ IR IEI B EIEN |

O o0 93 xnwsu ity

3

re _mr%&%%%%%ﬁv%éé%é%§6§6§§§<Y3__<r<w<r<w<

=1

vovBvivv] 7|4 [X| |

| v

@

[29Xg JOSOIIA Ul NS aseq

Xidje danjonay§ udisa(g aseg (@ xipuaddy

L8 neaqay L, ' suuoy

Ronnie E. Thebeau

88

133 35 33944 41

-

o2888ALBRIIIBEL AL LR

01 234506 7 8 91I0T1121314151817818 PII1222324252627 287930 313233043536 37 3800 4041 4740444548 47 48495087 5253545556 57 50 89 6065 0

OSMMare AI0-Nov -2000 202422
Etement

LA R AR ANER AR ARARERRRERRARERERRS

AAAARRARR AL R R ARRERERERSRRARRELR]

Trray LILILLELEL TT I TTVITT VY TrrEyryrrr Ty vy T o rrrrryrrrrrrrrrrry

IlllllIlllLlIlllllllll'lllllllllIllllllllllllllLLlllllll .1

]Illll!lllllll]lll‘;llllIIllll‘lllIIlllllllllll]lllllllllll

-

Graphical Representation of Base DSM using Matlab

Ronnie E. Thebeau 89

Appendix E Final Clustering Results

New OSMMats 471 Dec 2000 1022 482m TomiCast 14940
Etemmnl

08 8 913141617182024203032333435370840414743454858 7 3 4 827607 7 164446472530505157 1019935701 50544050730 12262250 11290121 0

[)

) Clustered DSM using
! ‘) : all elements.

I AT T B3 3.0 34 T - PPieY

EERA8LE L BYa
.

G

E St bt b-1344

oY

ladd .t da it aa i g it aaesaiaadsiraaxas tyigy

New DWikre &3 Dec TOUG 19280 1. o Cout 163728

Erommnt

92 ¢ A0 MOLIM P B es81T IR ES LA RN 1IN BN TAUIMAMESTAAI 1ASCSI B2 TMICISB A MINTIM LTI B2 4 AN D
H 24 Clustered DSM.
- * .
3 . Using all parameters
!x’x 2
§ beodesel but varied interaction
; strengths.
).

et
Mt PP ML PRI S 331 S L2 SRR H £

\ARASEARARI AR SRR R R RR N AR NI RN AR ERARRARRRRRRRE]

.
* ¢ e .
° ’
. 3

4
:
i
v . * L d
. . X - * E X - (R X X3 .
£ z * i
L} .
ki
':,llllllll]lllll‘lllﬁllllllllllllllLLlJl llllll‘lA'LLllll"ljl

Ronnie E. Thebeau 90

Neow DihiMars & Do /X0 D28 atrm tomCuat A1
Fomar

TA3 ANWMA LTAIAL T % U3 MMAA AT MR 4SRN 1100 S4T4n RS L U126 2120 IS B34 0REN DI ate 42 BIAJ2LE 106 GC L AINOR 0 3

: ~r ¥ UIII‘IVITIVII.'TYIII’T'II:IlllIllIll'll’l'ITT‘l'l;‘T

E) * . » . . *e

2B te, 8 - A Clustered DSM.
:’gr....z 108 oo . o o CITIER TR Y TR R 0% & 3 Varied Interaction Levels
2 2 * . .

iE + et t. 4 System parameters
JE o adel + excluded from cluster
) SR b algorithm.

5 E 3

N od .

%.: E .o .oo:

if | S

“E .

terare
<

‘
»F .

TE

;P

nE ®

;- L 4

v F

el ol *

ot

o fE

SE

;ﬁ._

4E ¢

Pl ol -

Frll o8

Ll il

LY o

4 Y "

HE .

sh e oo‘ ¢ et o . . LI . + e
HAN TSN NN TSR SN RTINS AL SRRV EUE TS SERNE SRR SR o)

foow MMasn D1 Liee 2000 1028020 Tomsl nat 17773
rorant

9 2422028203234365051 57 2 3 4 6 427103730 IM A4S EI 454748 1019205513 MW MBI/ IAZIANA I ITAISTRLAGLAAIAT B BT T ¢ 2 AVAGAO IR KL U ©

,3 ‘r ¥ .;;.‘:'lill‘::’;ilt‘lf'ﬁ‘lllllllllllllYllll‘l’llllllTTTT‘l

i ghaetse 3% 7 i o

2 . . 3 Clustered DSM.

% ‘e, Varied Interaction Levels

.

ié v, 65)’5[@"] parameters
1 . > . ~luste:
JEe ods excluded from cluster
*E — algorithm.

WE ee o

“ -

bl = .

38 od

LN o

wF

wE
im:
i BE .

NWE seeee N

s Fees

MF ecseese .

el o

SF

S F .e

2 =

v E e

wE

wf

wF

Y E

“E* .

tE o

i - .

‘1- 2 v

?EE o $ev o o '.:00000000“ ¢ o “. ‘-q: *
,'::AxAAllf‘AAL]LA!!'?:?I?IT![IAAAAAI:?:!;AAAAJAnAxAY'Al?.A

Ronnie E. Thebeau

91

B8o3.882288884T

PO
2a0uiI

1333344

ceXal8%

Neow OSMMayis, &1 Dec 2000 102008sm TomiCost 185985
Elemwnt

0 15244344454748 1 3 4 7 8272120203310 10209536575822230411 281/ 6104 405841422048 S 1813321217 7 6614052915, 403836343130251614 9 O

;;l;vltlvlulllllll;l;ll1l0ll||;l||lllluullv:vllril!;I;_
Pl

¢]

ES : 33]
Co § . *e®
E . * te o 24
- . *Q * L 4 3
C ‘. . o3 3
= . * 3
- s o
- * . 8 -
C * - . . =
- ¢ . L d : . -
- . . - . 3
o ® *]
:‘ * ’ . L 4 :
ET 2 * * 33
o LX) ' =
e $: 3
o ° .o s
o ‘e o
3 o
3 . . 343
é * P *3 3 000-;
- - . * @ o
E . ! $ 3
:' *e e . . . i * x:
T S IR L AR SRR U 51 AL < B *43,9°93
: Ll .3 .:
C M - * 3
F, $eed o * 00 & L * ooo.oooo &
:'l"’llllIl’fllL’LILL’l'IlllllllILLI'I'Il’l?l’ljill"lflf.l ;

Clustered DSM.

Varied Interaction Levels
8 System parameters
excluded from cluster
algorithm.

Ronnie E. Thebeau

92

Appendix F Matlab Modified Clustering Routines

FileName

| Page | Descriptions

Cluster Algorithm Functions and Scripts

run_cluster_A 93 Master file to load DSM variables and run
the clustering algorithm and graph results

Elevator_DSM 97 file to define the DSM with all interactions
valued at |

Elevator_DSM_varied 108 File to define the DSM with varied
interaction strengths

bid 119 calculates bid for from each of the clusters
tor the chosen element

cluster 121 Clustering Algorithm that uses the costing
routine to penalize multiple cluster
membership

coord_cost 127 Calculates the coordination cost using the
penalty for multiple cluster memberships

delete_clusters 133 deletes duplicate clusters

Cluster Graphing Functions

reorder_dsm_bycluster 130 reorders the DSM according to the cluster
matrix - also renters elements for every
cluster that they are a member of
Reorder_cluster 132 Sort the clusters by cluster size
dsm_autolabel 135 assign numbers to the DSM entries for the
graphing routines
place_diag 136 | place 1's along the diagonals of the matrix
graph_matrix 137 graph the DSM matrix or cluster matrix
line_mult_cluster 139 | place lines for duplicate clusters in the
cluster matrix graph]
plot_cluster_list 140 | print list of cluster member:

Cluster Analysis Caiculations and Graphing

S B

likeness_calc 143 Script file to get the average match
between clusters of several runs of the
clustering algorithm.

find_cluster_matches 144 Function to find matching clusters from
different runs of the clustering algorithm

get_match_avg 146 Function calculate the average of cluster

matches between two runs of cluster

| caleulations

Ronnie E. Thebeau 93

run_cluster_A

AR R R E SRR R R RS R R R SRR R AR R RS R R RS RSt is R Rl RN RS RdlEEl Rl RS R R R RESR]
A AR R R R R R E RS RS R R RS REEER R R RS SR R RS AR AR Rl ER SRRl iR it st s R RN RN
A AR R AR R R R RS RS R R EER R R RS R R R R R R R RS R RS AR R E R R RSttt iRt R R RN
KR AAT AR RRRN R AT ANRN AR AR IR AN RN TN RN T AN R R AN AR AR ANRNARNNRIRAA SN N AN TN R

A AR R R R R R RS RS R R R R R SRS RS ERRR R R R R R AR R R AR RS R R SRR RSt RSt l RS R R RE

*

files: run_cluster_A.m *
*

Created by: Ronnie E Thebeau *
System Design and Management Program *
Massacusetts Institute of Technology *

*

Date: December 2000 *
*

*

Script file to load in the DSM for analysis, run the *
*

clustering algorithm and graph the results
*

AR R R R SRR R RS RRE SRR SRR SRRl ERRRE RSl R RS RRllE RSN R RS ERER S RSN
(A AXES RS RS RS RS E SRR R R RS SS RSl R AR RSl R R R X R SRR Rl R AR SRSl RN SRR

A E A RS R LRSS SRR SRR RS R RS XSRS R RS RRSE R Rt AR sl R R SRR Rl RS R NS

L - i SR S S AR S S -

2SR RS R A RS R R AR R AR SRR R AR SR ERR SRR R R EsSRER RRRRRES R R R R R RS R R R R SRR

% LR A R R AR EE R AR 2R S SN RS R SRR ERRE R R AR AR R R R R R iRl Rl iR dl R R AR R RN
% SPECIFY & GET DSM MATRIX *
% TR AR R AN AN RAATRA AR ARAT R AR ATANARNA A A A TR AR AR AR AR AR AR AN R dhN
% name cf script file containing the DSM matrix and DSM labels *
% must contain to variabies bl
% *
% DSM matrix defining the DSM interaction values *
% *
% DSMLABEI, cell array containing strings for the labels *
2 of the DSM elements *
% *
% DSMFunc_LABELcell array containg the strings which label *
% the functional requirements that are mapped *
% toy the DSM elements *
% *

Elevator_DSM_varied; % enter name of DSM script file

% LA SRS A S S LRSS RREEREE RS END GET [)SM MATRIX (A2 SRR SRR RS R RS RRE SR E RSl R RN

I R R R R R R R R A R R R R R R R R R R R
USFER PARAMETFERS *
R R R R R R R R R R AR AR R R R R R R R R P

print flaqg set te 1 to print the plotted fiqures *
»

ELE I S S

Ronnie E. Thebeau 94

extract elements detines which elements will be considered *
as system elements and wili not be used
tor the clustering purposes
The system parameters generally contain
many entries along the row, column, or both

* * * % * »

Cluster param structure containing the parameters which

control the clustering algorithm *
AR R AR R R RS RS R R R N S R R R R R R R R R R R R R N R R R R R A R AR AR R R R]

OR OF I R P RN R

print flag - 0;
extract elements -+ [9,16,60,61,40.14, 38,25} ;

Cluster param.pow cc M O % penalty assigned to cluster size(2)
Cluster param.pow bid R % high value penalizes large clusters (0-13,
2)

Cluster param pow dep -4, ¢ high value emphasizes high i1nteractions (0
2, 2)

Cluster param.max cluster size 61 $ max size of cluster (DSM size)

Cluster param.rand accept - 122, % proceed w/ | ot N changes oven 1t no

imp (0.5-2 *DSM)

Cluster param rand bid - 122, % take second highest bid 1 out ot N times
(0.5-2 * DSM)

Cluster param.times - 2; ¢ attept timersize betore check sys.
stability (2)

Cluster param.stable_limit =2, % loop at least stable limit*times*size
(2)

% LA A SRS A RERES EREE R RS E R R R A R R R R R AR R R R RS
% LA AR RS RS SRR SRR 2N EN{) USER :)ARAME'I‘F:RS ISR A AR RS R LR AR R R R SR RS RE RSN

% LA AR SR SRR R R R R 2 RN R R R R R R R

% AR R A AR RS SR EE SRR RS R R RR RRRR R R N EREREE R EEREIRIE I IR I IR I PRI IR R IR I S I IS I I I I S

% EXTRACT SPECIFIED SYSTEM PARAMETERS *

% LAAEAAR R EAR AR SR R R EEE R RS R R R R R R R R R R A2 R A AR R

DSM_matrix ~ [DSM;
DSM_matrix original - DSM _ matrix, % save a copy of the original DSM

t set system parameters to zero to remove their influence during clustering
for i = 1- length(extrart colements)
DSM_matrix(extract elements(i1),:) = 0;
DSM_matrix(:,extract elements{1)) = 0;
end
% I AEZ R RS EREEREEES R EEY END EXTRACT SYSTEM IDARAMHT :RS AR A SRS R RS R R AR R AR ERERENRR?

% A EA SRR AR R R A R R S R R R S A R R R R R R R R L e R R R R R R R R R

% PUN CLUSTERING "

% AR B ER RS SRR AR SR R R R R R R R R A R R R R R R R R R R R R R R R

[Cluster matrix, total coord cost, cost history, old data)
Cluster(DSM matrix, Cluster param),

k'3 LA R A AR R R EREEEERERXRENESEX] P:NI‘, R]]N (’['[}E;'I[-:RIN(" AR S AR SR AL R NS SRR R AREREREEREXRXRERNRE]

Ronnie E. Thebeau 95

(A AR EE S SRS RS AR R R RS RSR R d R il Xl 2R i s i R R R 2 a2 i xR aRERRRE R XN
LA AR R RS AR R R SRR RS R R RS AR RR SRR Rl sl R R s RS2 il sl iRl XN N1
AR RS SRR RS RS RXEa it Rl Xl Rl RRitd i il ia R i s 2 X2 sl 22 X 2
*

GRAPHING *
L]
IR EZEZ R R R R R RS R R R RS RS SRR SR R RS R RS R R R RS R R S RS RRRRRRREXERSRRE RS R R R R R

IAES R SRR R RS SRR RS2SR X Rl s R SR 2Rz f8 222028t sttt X

P P P O OP P P 0P P

A RS RS RRR RS Ss s 2Rttt iRl Rl sl il sl RS R E R

% sort the cluster matrix by cluster size
[Cluster_matrix] = reorder_cluster(Cluster_matrix); % sort cluster by cluster
size

% Get label of axes for DSM and cluster graphs
[Cluster_label] = DSM_autolabel(Cluster_matrix);

% create generic number labels that correspond to the location
% in the original DSM
[DSM_labels] = DSM_autolabel (DSM_matrix);

% re-order the DSM matrix and labels according to the results of the cluster
matrix

[New_DSM_matrix, New_DSM_labels] = reorder_DSM_byCluster{DSM_matrix_original,
Cluster_matrix, DSM_labels);

% Place the wvalue 1 along the diagonal of the DSM
[graph_DSM_matrix] = place_diag(DSM_matrix_original, 1);
[graph_New_DSM_matrix] = place_diag(New_DSM_matrix, 1);

% GRAPH THE MATRICES
get_date = now; % ¢get date and time for graphing
current_date = datestr (get_date,0):

% Create titles for the graphs

DSM_title = [’DSM Matrix; " current_date};

Cluster_title = ['Cluster Matrix; ' current_date];

New_DSM_title = ['New DSM Matrix: ' current_date °; Total Cost: '
num2str(total_coord_cost)]:

% graph th- original DSM Matrix
graph_matrix(graph_DSM_matrix, 'Element’, 'Element’ ,DSM_title, DSM_labels,
D5M_labels, print_flaqy;

% graph the Cluster Matrix
graph_matrix(Cluster matrix, 'Element’, 'Ciuster ,Cluster_title, DSM_labels,
Cluster_label, 0

% add lines on the cluster matrix to idertify elements that belong
% to more than one cluster

Ronnie E. Thebeau

96

line_mult_cluster(Cluster_matrix,gcf, gca);
if print_flag==

print;
end

% graph the new DSM matrix reodered by the cluster assignments
graph _matrix(graph_New_ DSM_matrix,’'Element’,’Element’, New DSM title,
New DSM labels, New_DSM_labels, print_flag, Cluster _matrix);

% create a text list of the elements of each cluster

plot _cluster_list(Cluster_matrix, DSM_matrix, DSMLABEL, current_date,
print_flagy);

plot_cluster_list(Cluster_matrix, DSM_matrix, DSMFunc_LABEL, current_date,
print flag);

% get only the nonzero value in the cost history

% cutoff the end of the history array which was not filled in
[cost_g_zero, cg] = find(cost_history);

max_run = max(cost_g_.ero);

% plot the cost history
plot(cost_history(l-max_runy)),

title({'Clustering Cost History; ' current_date]),
®label('Chanze 2,

vlabel ('Cost ')

orient landscape;

1f print_flag =-=1

print;
end
% ttﬂ"**i*it***tﬁtt't’iQ"att't'Qﬁtﬁﬁﬁt‘ttit".'ﬁttfﬁtt*'ﬁﬁti*'t*ttt'ﬁttiit*
% ENDL GRAPHING *

% f't*i'**'*t*’*f*ttt.tﬁ'QQ"’"ﬁ'ﬁ'ﬁ'Q“ﬁﬁﬁ'ﬁt*ﬁt""tﬁ,Qi'*'ﬁﬁf"ﬁ'ﬁ*’t*tﬁﬁiﬁt'

Ronnie E. Thebeau

Elevator DSM

00 0P 00 0P P OO d0 JP O 0P 0P P 0P dP IR OF 0P 00 O IR I of df IR

E
%
%

khkkhkkhhkhrdkhhhhhhhkohrhhkhhohrhhrhkdh Ak khhhkhkhhh kA kdhhdhhhhkhhkhhhhhrrhkhAhdhax
dhkhkhkhkhkhkhhhkhhhdkhhhhhhhkhhhkhhhhrhhhhhkkhhhkdhhhhhhkhrhkdhdhhrhhhhkrhhkhkhkdhhrhhhkdhhkx
kkhkhkhkkkhhdkhhhhhhkhhkhhkhkrkhkkhk Ak khk bk kdhhrhhkd Ak khhkhhhhhkbdhrkkkdhkhkdhrhdrhdd
AkkhhhkhhhhhhhkdhhhhdhhkhhrhkhhhArrkArhrhr kb hkkdhhhrkkkhdhhhhhkhkkhhrh ok rrhrdx
Ahkkkkhhkhkhkhhdhhhhhhhhdhkrhkhhkhhhkh Ak hdhhrhdhkhhhhhhhhrrhhhrrkkhkkhkhhkhkhrhkhkhdkx

*
Files: Elevator_DSM.m *
*
Created by: Ronnie E. Thebeau *
System Design and Management Program *
Massacusetts Institute of Technology *
*
Date: December 2000 *
*
Entries indicate an interaction between two elements and the value *
represents the interaction strength *
*

This DSM represents a subset of elements and interactions within a
generic elevator system *
*

kkhkkkdkhhkhkhkhkkhhhhrh kA kAhdhhrhdhkhhhhkhkhhkhhhkdhhkkkrhhhkkhrkrd A r kb hdhrrhdhk
khkhkkhkhhhhhhk XA Ak hhkhhhkhkk ko kr Ak hkr kA hhkrhArhhdhhdhkhkrrkkhhrrhkhkddrhhdk
dkkhhhhkdkhkhhkkhkhkhhhhhTrhkh kAR drrrhrhhhh Ak kA dhkhhkhhhkhhkhhhrhrhhhhhhhhkhdhdhkhkhkh
Ahkkkhkhkhkhhkkkhhhkhrhhhkhkk Ak khkh ARk bk d kA Ak kA ok kb kA Ak kd kA Ak h Ak khkkh K

Ak khhkhkhkk Ak khhhrhhhkhAhkhhk ok khkh AR AR IR kAR Ah Ak Ak hrhkkk kb rhkhkhkdk kb hrhddhrhdx

DSM TEMPLATE *

Ak hhkdhhhkdkhhhkrkr ko kA rAhr Ak ARk rrkd A bk hrhhhkhrhhrhrhhhhrhhhrhhkrhrdhhhdkdk

DSM_size = 61; $ number of elements in the DSM
DSM = zeros(DSM_size);

§ *kkk*x DSM ENTRIES *****
DSM(1,1) = 1;
DSM(15,1) = 1;

DSM(60,1) = 1;

DSM(2,2) = 1;
DSM(40,2) = 1;
DSM(60,2) = 1;

DSM(3,3) = 1;
DSM(15,3) = 1;
DSM(60,3) = 1;

DSM(4,4) = 1;

DSM(40,4)

I}
=

DSM(60,4) = 1;

DSM(5,5) = 1;
DSM(9,5) = 1;
DSM(40,5) = 1;

DSM(60,5) = 1;

DSM(2,6)

"
=

Ronnie E. Thebeau

DSM(6,6)
DSM(9,6)
DSM(27,6)
DSM(40,6)

DSM(1,7)
DSM(7,7)
DSM(15,7)
DSM(27,7)

DSM(8,8)
DSM(9,8)
DSM(27,8)
DSM(40,8)

DSM(2,9)
DSM(4,9)
DSM(5,9)
DSM(9,9)
DSM(15,9)
DSM(20,9)
DSM(25,9)
DSM(27,9)
DSM(32,9)
DSM(34,9)
DSM(35,9)
DSM(40,9)

DSM(10,10) =
DSM(11,10) =
DSM(19,10) =

DSM(40,10)
DSM(55,10)

DSM(10,11) =

DSM(11,11)

DSM(12,11) =

DSM(15,11)
DSM(21,11)
DSM(25,11)
DSM(26,11)
DSM(28,11)
DSM(29,11)
DSM(37,11)
DSM(57,11)
DSM(58,11)

DSM(11,12) =

DSM(12,12)
DSM(19,12)
DSM(26,12)

DSM(13,13) =

DSM(32,13)
DSM(33,13)
DSM(39,13)
DSM(40,13)
DSM(41,13)
DSM(55,13)
DSM(56,13)
DSM(60,13)

DSM(1,14)

i

[SR

o

[A

~

~

R T T TR T TR

el el S SR S SRy S gy SRR

BN

Seose sy s

L TR

el e e e N =y Sy

[S
o e e me e a. [.~

~

[I S S R SR S R

=

Ronnie E. Thebeau

DSM(2,14)

DSM(3,14)

DSM(5,14)

DSM(6,14)

DSM(7,14)

DSM(9,14)

DSM(14,14)
DSM(16,14)
DSM(18,14)
DSM(21,14)
DSM(25,14)
DSM(26,14)
DSM(27,14)
DSM(28,14)
DSM(29,14)
DSM(30,14)
DSM(31,14)
DSM(32,14)
DSM(33,14)
DSM(34,14)
DSM(37,14)
DSM(42,14)
DSM(43,14)
DSM(44,14)
DSM(45,14)
DSM(48,14)
DSM(50,14)
DSM(51,14)
DSM(52,14)
DSM(53,14)

DSM(1,15)
DSM(3,15)
DSM(7,15)
DSM(9,15)
DSM(11,15)
DSM(15,15)
DSM(16,15)
DSM(23,15)
DSM(43,15)
DSM(44,15)

o

]

T AN S| | N 1 B
FR PP RPRHERRERRERRPRRERPBRERBEBRBHERRERERRPRRPERRR

]

owoh

n

hon

DSM(45,15) =

DSM(46,15)
DSM(47,15)
DSM(48,15)
DSM(49,15)
DSM(60,15)

DSM(1,16)
DSM(2,16)
DSM(3,16)
DSM(4,16)
DSM(5,16)

1

PR HE R RBERERP RS R R

DSM(15,16) =

DSM(16,16)

DSM(20,16) =

DSM(30,16)

DSM(32,16) =

DSM(33,16)
DSM(34,16)

DSM(40,16) =

DSM(42,16)

Se St e Ne e s me Ne N we Se we

R TN

P T T I T TR TR

Ne st Ne se we Se s s s

P P

e e R s

Ronnie E. Thebeau 100

R)

DSM(12,17)
DSM(14,17) =
DSM(17,17) =
DSM(38,17) =
DSM(41,17) =

DSM(5,18) =
DSM(18,18) =
DSM(28,18) =
DSM(29,18) =
DSM(38,18) =
DSM(42,18) =

[N R S SRy ST

DSM(19,19) =
DSM(20,19) =
DSM(22,19) =
DSM(40,19) =
DSM(55,19) =

e e S

DSM(20,20) =
DSM(40,20) =

[Rrgy

DSM(11,21) =
DSM(21,21) =
DSM(26,21) =
DSM(38,21) =
DSM(57,21) =
DSM(58,21) =

o e e e

DSM(22,22) =
DSM(23,22) =
DSM(40,22) =
DSM(56,22) =

~e e s

[

DSM(15,23) =
DSM(22,23) =
DSM(23,23) =
DSM(39,23) =

~eone s

[S A

DSM(24,24) =
DSM(25,24) =
DSM(26,24) =
DSM(57,24) =

S ome s

[SR

DSM(24,25) =
DSM(25,25) =
DSM(26,25) =
DSM(27,25) =
DSM(35,25) =
DSM(37,25) =
DSM(38,25) =
DSM(42,25) =
DSM(57,25) =
DSM(58,25) =

~e e

[l = N S S ST S Ry U R SR

DSM(12,26) =
DSM(21,26) =
DSM(25,26) =
DSM(26,26) =
DSM(35,26) =
DSM(38,26) =
DSM(57,26) =
DSM(53,26) =

ST Y SO SN

~

Ronnie E. Thebeau 101

DSM(1,27) =
DSM(2,27) =
DSM(3,27) =
DSM(4,27) =
DSM(5,27) =
DSM(9,27) =
DSM(25,27) =
DSM(27,27) =
DSM(35,27) =
DSM(58,27) =

Se Ne e

PR

N~ Ne ~e s

PR RPREPRRRRPe

DSM(11,28) =
DSM(24,28)
DSM(25,28)
DSM(27,28) =
DSM(28,28) =
DSM(35,28) =
DSM(58,28) =

HBP R

DSM(11,29) =
DSM(25,29) =
DSM(26,29) =
DSM(29,29) =
DSM(35,29) =
DSM(58,29) =

I S S S

~

DSM(9,30)
DSM(25,30)
DSM(30,30)
DSM(38,30)
DSM(40,30) =

I
I o

RSN

=

DSM(25,31) =
DSM(31,31) =
DSM(38,31) =

[

DSM(9,32) =
DSM(13,32) =
DSM(25,32) =
DSM(26,32) =
DSM(32,32) =
DSM(35,32) =
DSM(38,32) =
DSM(40,32) =
DSM(58,32) =

L T T N T

HHERPRPRP PR PR

~

DSM(9,33) =
DSM(26,33) =
DSM(33,33) =
DSM(38,33) =
DSM(40,33) =

[N

R R e

~.

DSM(9,34) =
DSM(25,34) =
DSM(34,34) =
DSM(40,34) =

e

~

DSM(9,35) =
DSM(35,35) =
DSM(58,35) =

[

DSM(25,36) =

=

Ronnie E. Thebeau 102

DSM(36,36) =

=

DSM(37,37) =
DSM(38,37) =
DSM(57,37) =
DSM(58,37) =

O R e
~ o~ .

~

DSM(9,38) =
DSM(25,38) =
DSM(26,38) =
DSM(27,38) =
DSM(35,38) =
DSM(38,38) =
DSM(57,38) =
DSM(58,38) =

PR R T TANR SR,

o R e e

~

DSM(9,39) =
DSM(13,39) =
DSM(23,39) =
DSM(38,39) =
DSM(39,39) =
DSM(40,39) =

[S S Y

DSM(2,40) =
DSM(4,40) =
DSM(5,40) =
DSM(6,40) =
DSM(8,40) =
DSM(9,40) =
DSM(10,40) =
DSM(13,40) =
DSM(16,40) =
DSM(20,40) =
DSM(22,40) =
DSM(30,40) =
DSM(32,40) =
DSM(34,40) =
DSM(39,40) =
DSM(40,40) =
DSM(41,40) =
DSM(42,40) =
DSM(43,40) =
DSM(44,40) =
DSM(45,40) =
DSM(46,40) =
DSM(47,40) =
DSM(48,40) =
DSM(53,40) =
DSM(54,40) =
DSM(55,40) =
DSM(56,40) =
DSM(60,40) =

B T

~

ShoNe s Ne Nese s me N we e s we s

e el el e T e R S S T T T W W S S U TP

DSM(13,41) =
DSM(38,41) =
DSM(40,41) =
DSM(41,41) =
DSM(42,41) =
DSM(49,41) =
DSM(58,41) =
DSM(59,41) =
DSM(60,41) =

i I I Sy SRy

Ronnie E. Thebeau 103

~e

DSM(9,42)
DSM(25,42) =
DSM(35,42)
DSM(38,42)
DSM(40,42)
DSM(41,42)
DSM(42,42)
DSM(57,42)
DSM(58,42) =

o

o onn
[N = N e

~

DSM(9,43) =
DSM(15,43)
DSM(24,43)
DSM(25,43)
DSM(38,43)
DSM(40,43)
DSM(43,43) =

nnonowon
R e e e

DSM(9,44) =
DSM(15,44) =
DSM(24,44) =
DSM(25,44) =
DSM(38,44) =
DSM(40,44) =
DSM(44,44) =

o e

DSM(9,45) =
DSM(15,45) =
DSM(24,45) =
DSM(25,45) =
DSM(28,45) =
DSM(37,45) =
DSM(38,45) =
DSM(40,45) =
DSM(45,45) =
DSM(58,45) =

R el e e

DSM(15,46) =
DSM(38,46) =
DSM(39,46) =
DSM(46,46) =

o e

DSM(15,47) =
DSM(38,47) =
DSM(40,47) =
DSM(47,47) =

e s we

[

~

DSM(15,48) =
DSM(24,48)
DSM(25,48) =
DSM(38,48)
DSM(40,48)
DSM(48,48) =

] [
RN

e

~

it
~

~

DSM(13,49) = 1
DSM(15,49) = 1;
DSM(38,49) = 1
DSM(41,49) = 1
DSM(49,49)
DSM(59,49)
DSM(60,49) = 1;

non
o=
“ o~

DSM(25,50) = 1;

Ronnie E. Thebeau 104

DSM(50,50) = 1;

DSM(25,51) = 1;
DSM(51,51) = 1;

DSM(25,52) = 1;
DSM(52,52) = 1;

DSM(40,53) = 1
DSM(53,53) = 1
DSM(54,53) = 1;
DSM(60,53) = 1

DSM(40,54) = 1;
DSM(53,54) = 1;
DSM(54,54) = 1;

DSM(10,55) = 1;
DSM(40,55) = 1;
DSM(55,55) = 1;

DSM(22,56) = 1;
DSM(40,56) = 1;
DSM(56,56) = 1;

DSM(35,57) = 1
DSM(57,57) = 1;
DSM(58,57) = 1
DSM(61,57) = 1

DSM(9,58) = 1;
DSM(35,58) = 1;
DSM(58,58) = 1;

DSM(49,59) = 1;
DSM(59,59) = 1;

DSM(1,60) =
DSM(2,60) =
DSM(3,60) =
DSM(4,60) =
DSM(5,60) =
DSM{5,60) =
DSH(7,60)
D3M(8,60)
DSM(13,60) =
DSM(32,60)
DSM(34,60) =
DSM(40,60) =
DSM(41,60) =
DSM(49,60) =
DSM(53,60)
DSM(55,60)
DSM(56,60) =
DSM(60,60) =
DSM(61,60) =

o
B

[} I
B2 b b R S ke e b e e
e e e e e s

DSM(13,61)
DSM(30,61) =
DSM(31,61) =
DSM(33,61) =
DSM(34,61) =
DSM(35,61) =

[
B S S G

~.

~

Ronnie E. Thebeau 105

DSM(40,61) = 1;
DSM(41,61) = 1;
DSM(49,61) = 1;
DSM(53,61) = 1;
DSM(57,61) = 1;
DSM(58,61) = 1;
DSM(59,61) = 1
DSM(60,61) = 1;
DSM(61,61) = 1

% dhkhkhkhk kA kA AR R IR AT A AT ARk kA Ak kA Ak k kA kA Ak r bk hhkhhdhh Ak hhhhhkddhhk

% DSM Elements Labels *

% Akdkhkhkrkhkkk Ak h kA kA r kA Ak kh kA Ak Ak kA h kA h bk Ak kdhhhdrhkhkdhhhhrhkkrrhkhhk

DSMLABEL = cell(DSM_size,1);
DSMLABEL{1,1}

DSMLABEL({ 2,1}

DSMLABEL{3,1} =
DSMLABEL{4,1} =
DSMLABEL{5,1} =
DSMLABEL{6,1}
DSMLABEL{7,1}
DSMLABEL({8,1}
DSMLABEL{9,1}

‘Hall Request Indicator’;
’Car Request Indicator’;
’‘Hallway Fixtures’;

’'Car Fixtures’;

"Emerg. Intercom-Phone’;
"Car Buttons’;

‘Hall Buttons’;

'Firemans Service key’;
'Travelling Comm. Cable’;

[

DSMLABEL (19,1}
DSMLABEL{11,1}
DSMLABEL(12,1}
DSMLABEL{13,1}
DSMLABEL{14,1}
DSMLABEL{15,1}
DSMLABEL{16,1}
DSMLABEL{17,1}
DSMLABEL{18,1}
DSMLABEL({1¢,1}

DSMLABEL{ 20,1}
DSMLABEL{21,1}
DSMLABEL{ 22,1}
DSMLABEL{23,1}
DSMLABEL{ 24,1}
DSMLABEL{ 25,1}

'Ropes’ ;

‘Motor’;

‘Drive Power Section’;
‘Cab Floor/Plank’;
'Power Supplies’;
‘Building Structure’;
'Travel Cable Power’;
'Building Power’;
’Power Storage’;
'Counterweight’;

'Compensation System’;
'Brake System’;

‘Cab Guidance System’;
‘Guide Rails’;

'Learn Function’;
‘Motion Controller’;

DSMLABEL({26,1} =
DSMLABEL{27,1} =
DSMLABEL{ 28,1} =
DSMLABEL({29,1} =

"Electrical Drive Control’;
'Operational Controller’;
'Primary Position System’;
’Primary Velcotiy Measement’;

DSMLABEL{30,1} =
DSMLABEL{31,1} =
DSMLABEL{32,1} =
DSMLABEL{33,1} =
DSMLABEL{34,1} =
DSMLABEL{35,1} =
DSMLABEL{36,1}

DSMLABEL{37,1}

DSMLABEL{38,1} =
DSMLABEL{39,1} =

"Top-of-Car Insp. Ctl Panel’;
'Remote Insp. Ctl. Panel’;
’Load Weighing System’;
'Construction Control Panel’;
‘Door Close Button’;

’Service Tool’;

"Emerg. Gen. Signal’;
'Secondary Veloc. Check’;
'Safety System’;

‘Mechanical Safeties System’;

DSMLABEL{40,1} =
DSMLABEL{41,1}

"Cab’;
'Cab Doors’;

Ronnie E. Thebeau 106

DSMLABEL{42,1] "Door Controller’;
DSMLABEL{43,1} = ‘Terminal Sensing System’;
DSMLABEL{44,1} = ’'ETSD Sensor’;
DSMLABEL{45,1} 'Door Zone Sensors’;
DSMLABEL{46,1} 'Governor System’;
DSMLABEL{47,1} 'Terminal Buffer’;
DSMLABEL({48,1} 'NTSD Sensor’;

DSMLABEL{49,1} = ’Hoistway Doors’;
DSMLABEL{50,1} = 'Door Obstruction Sersor’;
DSMLABEL{51,1} = ’‘Earthquake Sensor’;
DSMLABEL{52,1} = ‘Building Sway Sensor’;
DSMLABEL{53,1} = ’Vent & Lighting System’;

DSMLABEL{54,1} = ’‘Cab Insullation’;
DSMLABEL{55,1} = ’'Ropes/Hitch Springs’;

DSMLABEL{56,1} = ‘Guide Springs/ Rail Align’;
DSMLABEL{57,1} = ’‘Diagnostics’;

DSMLABEL{58,1} = ‘'Remote Monitoring System’;
DSMLABEL{59,1} = ’Acces keying on Hstway Doors’;
DSMLABEL{60,1} = ’'Passenger Load’;

DSMLABEL{61,1} ’'Service Guy’;

% LA AR AR RS RREE RS AR R R R R R R R R R R LT LT I arur v

Functional Mapping to Physical Elements *
***********'ﬁ*******************'k******'k*******************t***************

0P e

Each of the functional labels represents the functional
requirement for which the physcial DSM element represents
Used to cross-reference the physical elemnts and
functional requiremnts

0P dP0 oP oP

DSMFunc_LABEL = cell(DSM_size,l);

DSMFunc_LABEL{1,1} = ’‘Acknowledge Hall Svc Rgst’;
DSMFunc_LABEL{2,1} "Acknowledge Car Service Rgst’;
DSMFunc_LABEL({3,1} "Comm. Status w/ Hall Pass.’;
DSMFunc_LABEL({4,1} ‘Comm. Status w/ Car Pass.’;
DSMFunc_LABEL({5,1} "Emerg. Comm. w/ car pass.’;
DSMFunc_LABEL{6,1} "Input Car Rgst’;
DSMFunc_LABEL{7,1} ‘Input Hall Rgst’;
DSMFunc_LABEL{8,1} "Input Firemans Svc Rgst’;
DSMFunc_LABEL{9,1} "Provide Comm. Link to Pass’;

i

fl

il

DSMFunc_LABEL{10,1}
DSMFunc_LABEL{11,1}
DSMFunc_LABEL{12,1}
DSMFunc_LABEL{13,1}
DSMFunc_LABEL{14,1}
DSMFunc_LABEL{15,1}
DSMFunc_LABEL{16,1}
DSMFunc_LABEL{17,1}
DSMFunc_LABEL{18,1}
DSMFunc_LABEL{19,1}

‘Xmit force to containment’;

"Energy Transformation to Force’;
'Provide Energy for Motion’;

'Support load for movement’;

'Provide power to comp.’;

'Provide structure to contain Sys.’;
"Provide power to containment’;
'Provide power for system’:

'Temporary power for memory’;

'Provide Counterbalancing to contain.’;

#

]

I

f

DSMFunc_LABEL{ 20,1}
DSMFunc_LABEL({ 21,1}

"Provide coubterbalancing of ropes’;
"Hold containment at destination’;

DSMFunc_LABEL{22,1} = ’‘Maintain guidance in pathway’;
DSMFunc _LABEL({23,1} = ’'Provide path for motion in Hwy’;
DSMFunc_LABEL{24,1}) = ’'System Calibration’;
DSMFunc_LABEL{25,1} = ’‘Compute Trajectory’;

DSMFunc_LABEL{26,1} = ‘Control Motion to trajectory’;

Ronnie E. Thebeau

107

DSMFunc_LABEL{ 27,1}
DSMFunc_LABEL{28,1}
DSMFunc_LABEL{29,1)

DSMFunc_LABEL{30,1}
DSMFunc_LABEL{31,1}
DSMFunc_LABEL{32,1}
DSMFunc_LABEL{33,1}
DSMFunc_LABEL{34,1}
DSMFunc_LABEL{35,1}
DSMFunc_LABEL{36,1}
DSMFunc_LABEL{37,1}
DSMFunc_LABEL{ 38,1}
DSMFunc_LABEL{39,1}

DSMFunc_LABEL{40,1}
DSMFunc_LABEL{41,1}
DSMFunc_LABEL{42,1}
DSMFunc_LABEL{43,1}
DSMFunc_LABEL{44,1}
DSMFunc_LABEL{45,1}
DSMFunc_LABEL({46,1}
DSMFunc_LABEL{47,1}
DSMFunc_LABEL{48,1}
DSMFunc_LABEL{49,1}

DSMFunc_LABEL{50, 1}
DSMFunc_LABEL{51,1}
DSMFunc_LABEL{52,1}
DSMFunc_LABEL{53,1}
DSMFunc_LABEL{54,1}
DSMFunc_LABEL{55,1}
DSMFunc_LABEL{56,1}
DSMFunc_LABEL{57,1}
DSMFunc_LABEL{58,1}
DSMFunc_LABEL{59,1}

DSMFunc_LABEL(60,1}
DSMFunc_LABEL{61,1}

i

'Process Service Request’;
"Provide current position’;
"Provide Trajectory feedback’;

‘Top-of-car control (inspection)’;

'Remote Control (inspection)’;

'Detect if load is within limits’;
'Contruction Control’;

'Passenger Door control’;

"Provide access to view/change sys.
'Determine if on Emerg.

Power’ ;

'Detect Uncontrolled motion’;
‘Determine if safe to move’;

'Stop free-fall motion’;

'Protect load from hwy’;

'Provide safe load transfer’;
'Control acces to containment’;

’independent end of hwy sensor’;
'Emerg. Terminal Stopiing device’;

'Indep. Door zone sensing’;

'Mechanical Overspeed detection’;
’Provide end of Hwy cushion (bffr)’;
'Detect failure slow for last landing -NTSD’;

'Deny access to hwy’;

'Detect obstructed access’;

'Respond to Earthquake’;
'Detect Building sway’;

'Maintainsafe/comf load env.’;

‘Manage noise’;

'Manage vertical vibration’;
'Manage horizontal vibration’;

'Determine cause of malfunction’;
‘Monitor system health’;
'provide service access to hwy’;

'Passenger Load’;
'Service Guy’;

info.’;

Ronnie E. Thebeau 108

Elevator_DSM_varied

LA SRR R AR E LSRR RN SRR SRR R R R R R R R R R R R R R R R R R
LA AR R RS RS RRE R R R R R R R R R R R R R R R R R B
AR SRS S A REESRRRERR R R SRR RS RS EEE R R R R R R R Y A AR]
LA AR RS R SRR RS R R SRR R R R R R R R R R R R R g g R R i)
LA RS AR SEEERRRRRREE R RS S EE R

*

Files: Elevator_DSM_varied.m
Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology
Date: December 2000

Script file to create the Design Structure Matrix

Entries indicate an interaction between two elements and the value
represents the interaction strength

* % F F * % * * 4 * X * A * *

This DSM represents a subset of elements and interactions within a

generic elevator system
*

A A EEE SR RERERARE RS XSS SRR Rl R RS R
AR AR A SR RS AR N R SRR SRR R R R R R R R R R R S O SR R S

LEAA SRR A LRSS REREEREEEE SRR R R R E SRR R RS R R R R R R R R R R R R R R R R R R e Y

90 I 0 9O P 0D 0P AP O OP OP 0P 0P 0P O 00 00 OO IO OP OO OO 9O OO AP P

A A EEAS SRR RRREREE SRR ESRe RS YR e R R R R R R R R R R R R R R R R R

DSM_size = 61; % number of elements in the DSM
DSM = zeros(DSM_size);

% ***** DSM ENTRIES #*****
% interactions between the elements of the DSM

DSM(1,1) = 1;
DSM(15,1) = 0
DSM(60,1) = 0.

DSM(2,2) 1
DSM(40,2) = 1;
DSM(60,2) = 0

DSM(3,3) =1
DSM(15,3) = 0.
DSM(60,3) = 0

DSM(4,4) =1
DSM(40,4) = 1;
DSM(60,4) = 0

DSM(5,5) = 1
DSM(9,5) = 0
DSM(40,5) = 1;
DSM(60,5) = 0

DSM(2,6)
DSM(6,6)
DSM(9,6)

i
SIS

Ronnie E. Thebeau 109

DSM(27,6)
DSM(40,6)

[]
N

DSM(1,7)
DSM(7,7)
DSM(15,7) =
DSM(27,7) =

1]
N O
wm

DSM(8,8) =
DSM(9,8) =
DSM(27,8) =
DSM(40,8) =

NN -
w

DSM(2,9) =
DSM(4,9) =
DSM(5,9) =
DSM(9,9) =
DSM(15,9)

DSM(20,9)

DSM(25,9)

DSM(27,9) =
DSM(32,9) =
DSM(34,9) =
DSM(35,9) =
DSM(40,9) =

v\
~ o~

~

~ o~

NORFRFNMNMNMDMOORKRRREFK
6,]

DSM(10,10) =
DSM(11,10) =
DSM(19,10) =
DSM(40,10) =
DSM(55,10) =

NN DN

~e v we

DSM(10,11) =
DSM(11,11) =
DSM(12,11) =
DSM(15,11) =
DSM(21,11)
DSM(25,11) =
DSM(26,11)
DSM(28,11) =
DSM(29,11)
DSM(37,11) =
DSM(57,11)
DSM(58,11) =

[I [[
O Ol I b b s b kNN
LT
e

DSM(11,12) =
DSM(12,12) =
DSM(19,12) =
DSM(26,12) =

NOKFN
w

DSM(13,13) =
DSM(32,13) =
DSM(33,13) =
DSM(39,13) =
DSM(40,13) =
DSM(41,13) =
DSM(55,13) =
DSM(56,13) =
DSM(60,13) =

w

FRHEHRPRUODNDOR R

-

DSM(1,14)
DSM(2,14)
DSM(3,14)

L
e

Ronnie E. Thebeau 110

DSM(5,14)

DSM(6,14)

DSM(7,14)

DSM(9,14)

DSM(14,14)
DSM(16,14) =
DSM(18,14) =
DSM(21,14) =
DSM(25,14) =
DSM(26,14) =
DSM(27,14) =
DSM(28,14) =
DSM(29,14) =
DSM(30,14)
DSM(31,14)
DSM(32,14)
DSM(33,14) =
DSM(34,14) =
DSM(37,14) =
DSM(42,14) =
DSM(43,14) =
DSM(44,14) =
DSM(45,14) =
DSM(48,14) =
DSM(50,14) =
DSM(51,14) =
DSM(52,14) =
DSM(53,14) =

[Honou o
HREHPRPRRPHRRPRPRRPRREBREPRREPBRRERRPRRE P

Se NeoNs o Ne se me Ne e

R T LI T T SN SO

~ Ne

DSM(1,15)
DSM(3,15)
DSM(7,15) =
DSM(9,15) =
DSM(11,15) =
DSM(15,15) =
DSM(16,15) =
DSM(23,15) =
DSM(43,15) =
DSM(44,15) =
DSM(45,15) =
DSM(46,15)
DSM(47,15) =
DSM(48,15)
DSM(49,15)
DSM(60,15) =

i
wmun

~
wm

] 1

ONFRRHERERRERHORKFROOOO

-~

wm

~

DSM(1,16) =
DSM(2,16) =
DSM(3,16)
DSM(4,16) =
DSM(5,16) =
DSM(15,16) =
DSM(16,16)
DSM(20,16) =
DSM(30,16)
DSM(32,16) =
DSM(33,16) =
DSM(34,16) =
DSM(40,16) =
DSM(42,16) =

~

~e o~ N

~e .

~

~ .

il
HOHMHORMORORERRPRP R

~ e

DSM(12,17) =
DSM(14,17) =

| SR]

Ronnie E. Thebeau

DSM(17,17)
DSM(38,17)
DSM(41,17)

DSM(5,18)

DSM(18,18)
DSM(28,18)
DSM(29,18)
DSM(3€,18)
DSM(42,18)

DSM(19,19)
DSM(20,19)
DSM(22,19)
DSM(40,19)

DSM(55,19) =

DSM(20,20)
DSM(40,20)

DSM(11,21)

DSM(21,21) =
DSM(26,21) =

DSM(38,21)
DSM(57,21)
DSM(58,21)

DSM(22,22)
DSM(23,22)
DSM(40,22)
DSM(56,22)

DSM(15,23) =

DSM(22,23)
DSM(23,23)
DSM(39,23)

DSM(24,24) =

DSM(25,24)
DSM(26,24)

DSM(57,24) =

DSM(24,25)
DSM(25,25)
DSM(26,25)
DSM(27,25)
DSM(35,25)
DSM(37,25)
DSM(38,25)
DSM(42,25)
DSM(57,25)
DSM(58,25)

L | N | I |

]

OO HREREFONNERR

DSM(12,26) =

DSM(21,26)
DSM(25,26)
DSM(26,26)

DSM(35,26) =

DSM(38,26)

DSM(57,26) =
DSM(58,26) =

DSM(1,27)

[

O ORI

(RN

e~

N NP

O ON K

R T

~e Ne N
(S ;] [6)]
~e e ~

QO OKNKN
wn

(S8, §

Ronnie E. Thebeau 112

DSM(2,27) =
DSM(3,27) =
DSM(4,27) =
DSM(5,27) =
DSM(9,27) =
DSM(25,27) =
DSM(27,27) =
DSM(35,27) =
DSM(58,27) =

OO R WK ORKR
[9;3

(SN0, }

DSM(11,28) =
DSM(24,28) =
DSM(25,28) =
DSM(27,28) =
DSM(28,28) =
DSM(35,28) =
DSM(58,28) =

~

o ose s

CORKHNKER
Ut

DSM(11,29) =
DSM(25,29) =
DSM(26,29) =
DSM(29,29) =
DSM(35,29) =
DSM(58,29) =

BN

QO NN

(S 0]

DSM(9,30) =
DSM(25,30) =
DSM(30,30) =
DSM(38,30) =
DSM(40,30) =

[O SRS

fuy

DSM(25,31) =
DSM(31,31) =
DSM(38,31) =

S

DSM(9,32) =
DSM(13,32) =
DSM(25,32) =
DSM(26,32) =
DSM(32,32) =
DSM(35,32) =
DSM(38,32)
DSM(40,32)
DSM(58,32) =

]
v un wn

O OOKRFRNREO

(8)]

DSM(9,33) =
DSM(26,33) =
DSM(33,33) =
DSM(38,33) =
DSM(40,33) =

~e N se e

el

DSM(25,34) =
DSM(34,34) =
DSM(40,34) =

b

e ~e s

DSM(9135) =1;

DSM(35,35) = 1;
DSM(58,35) = 1;

DSM(25,36) = 1;
DSM(36,36) = 1;

Ronnie E. Thebeau 113

O O+

DSM(37,37)
DSM(38,37) =
DSM(57,37) =
DSM(58,37) =

~e =
(6, IN¥;)

wm
~

DSM(9,38)
DSM(25,38) =
DSM(26,38)
DSM(27,38) =
DSM(35,38)
DSM(38,38) =
DSM(57,38) =
DSM(58,38) =

~ .

1]
RPRPRPORRPEO
wn

~

P

DSM(9,39) =
DSM(13,39) =
DSM(23,39) =
DSM(38,39) =
DSM(39,39) =
DSM(40,39) =

w

NP RFEND=O

DSM(2,40) =
DSM(4,40) =
DSM(5,40) =
DSM(6,40) =
DSM(8,40) =
DSM(9,40) =
DSM(10,40) =
DSM(13,40) =
DSM(16,40) =
DSM(20,40) =
DSM(22,40) =
DSM(30,40)
DSM(32,40)
DSM(34,40)
DSM(39,40) =
DSM(40,40) =
DSM(41,40)
DSM(42,40)
DSM(43,40) =
DSM(44,40) =
DSM(45,40) =
DSM(46,40) =
DSM(47,40)
DSM(48,40)
DSM(53,40) =
DSM(54,40)
DSM(55,40) =
DSM(56,40) =
DSM(60,40) =

i oo [/} tonon

OFRNHENRRERRPHEREBRERRERNRNNHEHERERUNNEODNDRERRR R

DSM(13,41) =
DSM(38,41) =
DSM(40,41) =
DSM(41,41) =
DSM(42,41) =
DSM(49,41) =
DSM(58,41)
DSM(59,41) =
DSM(60,41) =

~

OPRP ONNFENKFPRP
9]

~ .

wu

DSM(9,42)

n
oy

Ronnie E. Thebeau 114

DSM(25,42) =
DSM(35,42) =
DSM(38,42) =
DSM(40,42) =
DSM(41,42) =
DSM(42,42) =
DSM(57,42) =
DSM(58,42) =

QO R NMFKN
vt n

DSM(9,43) =
DSM(15,43) =
DSM(24,43) =
DSM(25,43) =
DSM(38,43) =
DSM(40,43) =
DSM(43,43) =

~ s

RN P R e

DSM(9,44) =
DSM(15,44) =
DSM(24,44) =
DSM(25,44) =
DSM(38,44) =
DSM(40,44) =
DSM(44,44) =

e

N R e
N

DSM(9,45) =
DSM(15,45) =
DSM(24,45) =
DSM(25,45) =
DSM(28,45) =
DSM(37,45) =
DSM(38,45) =
DSM(40,45) =
DSM(45,45) =
DSM(58,45) =

OHNKH R HND R R
)

DSM(15,46) =
DSM(38,46) =
DSM(39,46) =
DSM(46,46) =

[Sy
oo -

DSM(15,47) =
DSM(38,47)
DSM(40,47) =
DSM(47,47)

] f
=™

DSM(15,48) =
DSM(24,48) =
DSM(25,48) =
DSM(38,48) =
DSM(40,48) =
DSM(48,48) =

R s e

DSM(13,49) =
DSM(15,49) =
DSM(38,49) =
DSM(41,49) =
DSM(49,49) =
DSM(59,49) =
DSM(60,49) =

QO NMRFNH

[%]

DSM(25,50) =
DSM(50,50) =

Ry

Ronnie E. Thebeau 115

DSM(25,51) = 1;
DSM(51,51) = 1;

DSM(25,52) = 1;
DSM(52,52) = 1;

DSM(40,53) =
DSM(53,53) =
DSM(54,53)
DSM(60,53) =

[
o KFN

DSM(40,54) = 2
DSM(53,54) = 1
DSM(54,54) = 1;

DSM(10,55) = 1;
DSM(40,55) =
DSM(55,55) = 1;

|
[

DSM(22,56) = 1;
DSM(40,56) = 1;
DSM(56,56) = 1;

DSM(35,57) = 0
DSM(57,57) = 1;
DSM(58,57) = 1
DSM(61,57) = 0

DSM(9,58) = 0
DSM(35,58) = 0.
DSM(58,58) = 1

(6,309]

S~

DSM(49,59) = 1;
DSM(59,59) = 1;

DSM(1,60) =
DSM(2,60) =
DSM(3,60) =
DSM(4,60) =
DSM(5,60) =
DSM(6,60) =
DSM(7,60) =
DSM(8,60) =
DSM(13,60) =
DSM(32,60) =
DSM(34,60) =
DSM(40,60) =
DSM(41,60) =
DSM(49,60)
DSM(53,60) =
DSM(55,60) =
DSM(56,60) =
DSM(60,60) =
DSM(61,60) =

Ne N

Seove e e

umuuuoautuwm
SeoN.

vose e

]
OFRPR OO0OOQCOKFFOKHRFOODOOOOOO
(SN, NS BN G, BEe,) w
~ ~e e s ~

w

DSM(13,61) =
DSM(30,61) =
DSM(31,61) =
DSM(33,61) =
DSM(34,61) =
DSM(35,61) =
DSM(40,61) =

NS

U,
~

.5;
.5;

[*NeNeoNoNeNoNe)

.5;

Ronnie E. Thebeau 116

DSM(41,61)
DSM(49,61)
DSM(53,61)
DSM(57,61)
DSM(58,61)
DSM(59,61)
DSM(60,61)
DSM(61,61)

~e se s

o~

[eNeoloNeNeNeNeNel
nmutuuu; o wn

PR S R R AR R R Y R R R R 22222

% DSM Elements Labels

PR RS AR R R R R R R R R R T T

*

DSMLABEL

DSMLABEL{1,1}
DSMLABEL({2,1}
DSMLABEL({3,1}
DSMLABEL{4,1}
DSMLABEL{S5,1}
DSMLABEL{€,1}
DSMLABEL{7,1}
DSMLABEL({8,1}
DSMLABEL{9,1}

DSMLABEL{10,1}
DSMLABEL{11,1}
DSMLABEL{12,1}
DSMLABEL{13,1}
DSMLABEL{14,1}
DSMLABEL{15,1}
DSMLABEL{16,1}
DSMLABEL({17,1}
DSMLABEL{18,1}
DSMLABEL{19,1}

DSMLABEL{ 20,1}
DSMLABEL{ 21,1}
DSMLABEL{22,1}
DSMLABEL({ 23,1}
DSMLABEL{ 24,1}
DSMLABEL{ 25,1}
DSMLABEL{ 26,1}
DSMLABEL{ 27,1}
DSMLABEL{ 28,1}
DSMLABEL{ 29,1}

DSMLABEL{ 30,1}
DSMLABEL{31,1}
DSMLABEL{32,1}
DSMLABEL{33,1}
DSMLABEL{34,1}
DSMLABEL{35,1}
DSMLABEL{ 36,1}
DSMLABEL{37,1}

ft

cell(DSM_size,1);

"Hall Request Indicator’;
‘Car Request Indicator’;
'Hallway Fixtures’;

’Car Fixtures’;

"Emerg. Intercom-Phone’;
‘Car Buttons’;

‘Hall Buttons’;

‘Firemans Service key’;
‘Travelling Comm. Cable’;

'Ropes’ ;

'Motor’;

'Drive Power Section’;
‘Cab Floor/Plank’;
'Power Supplies’;
’Building Structure’;
'Travel Cable Power’;
‘Building Power’;
'Power Storage’;
'Counterweight’;

‘Compensation System’;

’'Brake System’;

'Cab Guidance System’;

'Guide Rails’;

’Learn Function’;

'Motion Controller’;
'Electrical Drive Control’;
‘Operational Controller’;
"Primary Position System’;
‘Primary Velcotiy Measement';

'Top-of-Car Insp. Ctl Panel’;
"Remote Insp. Ctl. Panel’;
'Load Weighing System’;
‘Construction Control Panel’;
'Door Close Button’;

'Service Tool’;

'Emerg. Gen. Signal’;
'Secondary Veloc. Check’;

Ronnie E. Thebeau

117

DSMLABEL({ 38,1}
DSMLABEL{39,1}

DSMLABEL (40,1}
DSMLABEL{41,1}
DSMLABEL{42,1}
DSMLABEL({43,1}
DSMLABEL({44,1}
DSMLABEL{45,1}
DSMLABEL (46,1}
DSMLABEL{47,1}
DSMLABEL{48,1}
DSMLABEL({49,1}

DSMLABEL({50,1}
DSMLABEL({51,1}
DSMLABEL({52,1}
DSMLABEL{53,1}
DSMLABEL{ 54,1}
DSMLABEL{55, 1}
DSMLABEL{ 56,1}
DSMLABEL({57,1}
DSMLABEL{58,1}
DSMLABEL{59,1}

DSMLABEL{60,1}
DSMLABEL{61,1}

P Fhkkkhkkhhkhkhhhhhhhhhhhkhhhhbhhrhrkhkrhhhr kbbb rh bk d bk hrhhbrkrhhkdrrddd

a0 0P

00 90 0P of

DSMFunc_LABEL

DSMFunc_LABEL{1,1}

[

it

]

'Safety System’;
’‘Mechanical Safeties System’;

‘Cab’;

'Cab Doors’;

'Door Controller’;
'Terminal Sensing System’;
"ETSD Sensor’;

'Door Zone Sensors’;
'Governor System’;
'Terminal Buffer’;

"NTSD Sensor’;

'Hoistway Doors’;

'Door Obstruction Sensor’;
‘Barthquake Sensor’;

’Building Sway Sensor’;

’Vent & Lighting System’;

‘Cab Insullation’;

'Ropes/Hitch Springs’;

’Guide Springs/ Rail Align’;
‘Diagnostics’;

’'Remote Monitoring System’;
'Acces keying on Hstway Doors’;

’Passenger Load’;
’'Service Guy’;

Functional Mapping to Physical Elements

Each of the functional labels represents the functional
requirement for which the physcial DSM element represents
Used to cross-reference the physical elemnts and
functional requiremnts

cell(DSM_size,l):

’Acknowledge Hall Svc Rgst’;

DSMFunc_LABEL{2,1} = ’'Acknowledge Car Service Rgst’;
DSMFunc_LABEL{3,1} = ’‘Comm. Status w/ Hall Pass.’;
DSMFunc_LABEL{4,1} = ’'Comm. Status w/ Car Pass.’;

DSMFunc_LABEL{S5,1}
DSMFunc_LABEL{6,1}
DSMFunc_LABEL{7,1}
DSMFunc_LABEL{8,1}
DSMFunc_LABEL{9,1}

DSMFunc_LABEL{10,1}

'Emerg. Comm. w/ car pass.’;
"Input Car Rgst’;

‘Input Hall Rgst’;

’Input Firemans Svc Rgst’;
"Provide Comm. Link to Pass’;

'Xmit force to containment’;

DSMFunc_LABEL{11,1} = ’'Energy Transformation to Force’;

DSMFunc_LABEL{12,1}

'Provide Energy for Motion’;

*

Thkkkhkhkhkkkhhkhhhrhhhhhhhhhhhhhhhhrhkrhr kA bk kA kh kb kb hhk kA hrhrhddhrrhhrrbrdhhdhd

Ronnie E. Thebeau

118

DSMFunc_LABEL{13,1}
DSMFunc_LABEL{14,1}
DSMFunc_LABEL{15,1}
DSMFunc_LABEL{16,1}
DSMFunc_LABEL{17,1}
DSMFunc_LABEL{18,1}
DSMFunc_LABEL{19,1}

DSMFunc_LABEL{20,1}
DSMFunc_LABEL{21,1}
DSMFunc_LABEL{22,1}
DSMFunc_LABEL{23,1}
DSMFunc_LABEL{24,1}
DSMFunc_LABEL{25,1}
DSMFunc_LABEL{26,1}
DSMFunc_LABEL{27,1}
DSMFunc_LABEL{28,1}
DSMFunc_LABEL{29,1}

DSMFunc_LABEL({30,1}
DSMFunc_LABEL{31,1}
DSMFunc_LABEL{32,1}
DSMFunc_LABEL{33,1}
DSMFunc_LABEL{34,1}
DSMFunc_LABEL{35,1}
DSMFunc_LABEL{36,1}
DSMFunc_LABEL({37,1}
DSMFunc_LABEL{38,1}
DSMFunc_LABEL{39,1}

DSMFunc_LABEL{40,1}
DSMFunc_LABEL{41,1}
DSMFunc_LABEL{42,1}
DSMFunc_LABEL{43,1}
DSMFunc_LABEL{44,1}
DSMFunc_LABEL{45;1}
DSMFunc_LABEL({46,1}
DSMFunc_LABEL{47,1}
DSMFunc_LABEL{48,1}
DSMFunc_LABEL{49,"}

DSMFunc_LABEL{50,1}
DSMFunc_LABEL{51,1}
DSMFunc_LABEL{52,1}
DSMFunc_LABEL{53,1}
DSMFunc_LABEL{54,1}
DSMFunc_LABEL{55,1}
DSMFunc_LABEL{56,1}
DSMFunc_LABEL({57,1}
DSMFunc_LABEL{S58,1}
DSMFunc_LABEL{59,1}

DSMFunc_LABEL{60,1}
DSMFunc_LABEL{61,1}

[

"Support lcad for movement’;

'Provide power to comp.’;

"Provide structure to contain Sys.’;
’Provide power to containment’;
‘Provide power for system’;

‘Temporary power for memory’;

‘Provide Counterbalancing to contain.’;

'Provide coubterbalancing of ropes’;
‘Hold containment at destination’;
‘Maintain guidance in pathway’;
‘Provide path for motion in Hwy'’;
’System Calibration’;

'Compute Trajectory’;

‘Control Motion to trajectory’:;
"Process Service Request’;

'Provide current position’;

'Provide Trajectory feedback’;

"Top-of-car control (inspection)’;

"Remote Control (inspection)’;

‘Detect if load is within limits’;
‘Contruction Control’;

'Passenger Door control’;

'Provide access to view/change sys. info.’;
'Determine if on Emerg. Power’;

'Detect Uncontrolled motion’;

‘Determine if safe to move’;

"Stop free-fall motion’;

'Protect load from hwy’;

'Provide safe load transfer’;

'Control acces to containment’;

’independent end of hwy sensor’;

‘Emerg. Terminal Stopiing device’;

‘Indep. Door zone sensing’;

"Mechanical Overspeed detection’;

"Provide end of Hwy cushion (bffr)’;

"Detect failure slow for last landing -NTSD’;
‘Deny access to hwy’;

"Detect obstructed access’:
'Respond to BEarthquake’;

"Detect Building sway’;
"Maintainsafe/comf loaé env.’;
'Manage noise’;

'Manage vertical vibration’;
’Manage horizontal vibration’;
'Determine cause of malfunction’;
‘Monitor system health’;

'provide service access to hwy’;

'Passenger Load’;
'Service Guy’;

Ronnic E. Thebeau 119

Bid

function [cluster_bid]=bid(elmt, DSM_matrix, cluster_matrix, max_cluster_size,
pow_dep, pow_bid, cluster_size);

%[cluster_bid]=bid(elmt, DSM_matrix, cluster_matrix, max_cluster_size, pow_dep,
pow_bid, cluster_size);

%

%

%

% Function to calculate the bids from an element to each cluster of elements

%

%

%

% Inputs:

% elmt The DSM element number to receive bids from clusters

% DSM_matrix The DSM matrix

% Cluster_matrix The Cluster Matrix (cluster,element)

% 1 = element in cluster, 0 = not in cluster
% max_cluster_size maximum cluster size

% pow_dep parameter for weighting interactions between elements
% pow_bid parameter for penalizing cluster sizes

% cluster_size array of cluster sizes

%

%

% Outputs:

% cluster_bid array of the cluster bids

Khhkhk kR AR A A AT A AR AR AT R AAI R A A AR AR A IR AR AR A AR AT A Ak kA kb hkhkhhkhhhkk
khhkhkhhhkhhhhhhkhhkhkthhhhhkhrhhhkhkhrrhhbrhkr Ak bbbkt bhhrrhhbhkhrhhhhhki
hkhkkhkhhhkhkrhhkhkhrhkAhkA kA r kAT bk bbbk h Ak h Ak A Ak kA A Ak AR AR I AR AT AR AR AR A AR A Ak
LR R R X SRR RS RRE SRR RS E RSl RSttt st R R RS &R
Kk kRkhkhkhkhk A hkhkrhhA kb rhkk bk hk kb bk kA kA A Ak Ak k ko hk kA Ak kA Ak kA kxhk &

*

File: bid.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000
Function to calculate the bids from clusters for the selected element.

Each cluster makes a bid for the selected element based on the
bidding parameters.

* % ok o % ok * ok A * ¥ * *

This algorithm is based on work by Carlos Fernandez.
*

dhkdkhkhkkhkhkhhhkhkhkkrrhkhhrhhrhrhhhkhkbhbr kA rrrtrhkkr bbbk hdr kb brrb bbbk hrhdd
khkhkkhhkhbhkhrkhhkhhkhhkrhhhkhhhkrhhrhrhkhhrhhhhhkhhrhrhkhrdhrbhrdrrb bbb hkr bk hhhdd
Ak khkhhkhkk Ak rhkhkhhhkkdhhhhhAhhhkrh kbbb hhhrhhkhhhrh b hhrrhhbhahr kA hhhhdd
L2 RS2SR R R R SRS R AR Rs SRt Rt iRttt Rttt R R 2

0P 0P 00 0P O 0P OO 0P OP OP GO0 OP 0P I OP IR 0P d0 OP OP P O P oF

% get the number of clusters and number of elements
[n_clusters, DSM_size] = size(cluster_matrix);

% intialize the bidding array
cluster_bid = zeros(n_clusters,l);

$ For each Cluster, if any element in the cluster has an interaction with
% the selected element then add the number of interactions with the selected

Ronnie E. Thebeau 120

% element. Then use the number of interactions to calculate the bid.

for i=1l:n_clusters
in=0;
out=0;
for 3=1:DSM_size
% if element J is in Cluster i, need j not equal to element to avoid
diagnal
if((cluster_matrix(i,j)==1)&(j~-=elmt))
if (DSM_matrix(j,elmt)>0)
in = in + DSM_matrix(j,elmt);
end
if (DSM_matrix(elmt,j) > 0)
out = out + DSM_matrix(elmt.j):
end
end
end
% if there were any interactions with members of the clusters, make a bid
if ((in>0) | (out>0))
if (cluster_size(i) == max_cluster_size)
cluster_bid(i) = 0;
else
% calculate the cluster bid
cluster_bid(i)=((in+out)”pow_dep)/((cluster_size(i)"pow_bid)):
end
end
end

Ronnie E. Thebeau 121

Cluster

function [Cluster_matrix, total_coord_cost, cost_history, old_data] =
Cluster(DSM_matrix, Cluster_parau,;

$ [Cluster_matrix, total_coord_cost, cost_history, old_data] =
Cluster(DSM_matrix, Cluster_param);

%

% Inputs:

2 DSM_matrix the DSM matrix

2 Cluster_param structure containing the clustering control
parameters

%

% Outputs:

% Cluster_matrix cluster matrix based on the clustering algorithm
% total_coord_cost calculated cost of the cluster matrix solution

% cost_history record of the coordination cost as the algorith

% searched for a solution

% old_data intermediate solutions to the clustering routine
%

%

% Parameters of the structure "Cluster_param" include:

% Cluster_param.pow_cc penalty assigned to cluster size during
costing

% Cluster_param.pow_bid penalty assigned to cluster size during
bidding

% Cluster_param.pow_dep emphasizes high interactions

% Cluster_param.max_cluster_size max size of cluster

% Cluster_param.rand_accept randomly asccep change 1 of N times w/
no improvement

% Cluster_param.rand_bid randomly accept second highest bid 1 of
N times

% Cluster_param. times attept "times" changes before checking
for stability

% Cluster_param.stable_limit loop at least stable_limit*times*size
before ending

%

%

IR R R R RS RS R RS SRR RS2 22 SR sttt sttt Rl S S
IR R R R R R R R R R R RS RS RS SRR SRS RSS2 R R R Rttt Rt R R RN
L R R R R R R RSS2 RS RS2 SRR RS RS RiS Rttt RSt R Rl]
FhkhkhkXRXR R AR AR AR A Ah ok hhhkhkhhhhhhhhhhhhhhhhhkrkrhhdrhhhdrhkr bk rhkbkkhhdktd
R R R R R R RS eSS R SRS 222 RR RS Rt S

*

File: Cluster.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000

Function to cluster the elements of a matrix
Algorithm based on work developed by Carlos Fernandez

This function runs a clustering algorithm then calculates the cost of
the proposed solution. The objective is to find the solution that
in the lowest cost solution.

There is a higher cost for interactions that occur outside of clusters
and lower costs for interactions within clusters. There are also

dP 0P 0P OP OO OP 0P OF O 0P P P OP OPF P OP OF IP OJP P P O° oP

* % % % A F * % % * A * * * A * *

Ronnie E. Thebeau 122

penalties assigned to the size of clusters to avoid a solution where *
all elements are members of a single cluster. *
*
There results are highly dependant on the parameters passed to the *
algoreithm. *
*

LA ES SRR AR ERERREE R R R R R R Y]
LA A EE AR R EEE R RS RS R R R R E R RS R R R R T T R R B R R R O R R G v u e a

LA R AR R AR SRR IR SRR EERESE R R R R R R R R R R R R S R R I R R S AR re e a R

0P O P 0P OPF P OR O 0P OP

LA R R L R LRSS R R L R R R R R R R T I T

LR R R AR R RS EESE SRR R R R R R R R B R R R R R T S S AR T]

%

% Clustering Control Parameters *
% ***************t***t**
%

Extract clustering control parameters

pow_cc = Cluster_param.pow_cc;

pow_bid = Cluster_param.pow_bid;

pow_dep = Cluster_param.pow_dep;
max_cluster_size = Clbster_param‘max_cluster_size;
rand_accept = Cluster_param.rand_accept;
rand_bid = Cluster_param.rand_bid;

times = Cluster_param.times;

stable_limit = Cluster_param.stable_limit;
P khkkkkkkkkkkkkkkk* END GETTING CLUSTERING PARAMETERS *kkhskkkhhkkkrrhhhhkrhhh

F R T L T T T T L L T U vy

% Initialize Matices and arrays *
% ***i******t*************t***********t****************ﬁ**&*****************

DSM_size = size(DSM_matrix,2); % number of elements in tne DSM
n_clusters = DSM_size; % initial # clusters = # elements
max_repeat = 10; % maximum # of times to run through calc
coordination_cost = zeros(DSM_size,1l);

cluster_size = zeros(DSM_size,1l);

il

new_cluster_matrix zeros (DSM_size,DSM_size);
new_cluster_size = zeros(DSM_size,l);
cluster_bid zeros(DSM_size, 1l);
new_cluster_bid zeros(DSM_size,1);
new_coordination_cost zeros (DSM_size,1);
rnd_elmt_arr = zeros(DSM_size,1);

cluster_list = zeros(DSM_size,1l);
f Arkkkkkhk kAN kkkkxkhkx* END INTTALIZE MATRICES **dkhkhhkk kb kkhndk bk hhdkk*k

1

EE R R R R S 22 T T

% Initialize Clustering *
% AR A SR RS SRR EREREEEEEE R R R R R R R R R R R R R R R R S R U R S S G e A ar

Ronnie E. Thebeau 123

% ***x* initialize the cluster matrix along the diagonals****
% Initial clustering: nth cluster contains the nth element
cluster_diagonals = ones(1l,n_clusters);

Cluster_matrix = diag(cluster_diagonals);

cluster_size = ones(n_clusters,1l);

% calculate the initial starting coordination cost of the clustering
[{total_coord_cost] = Coord_Cost(DSM_matrix, Cluster_matrix, cluster_size,
pow_cc);

best_coord_cost = total_coord_cost;

% create an empty array to hold the cost history
cost_history = zeros(10e3,1);
history_index = 0;

% create matrices to store the best cost and the corrresponding

% cluster size and clustrix that have been found so far

best_curr_cost = total_coord_cost;

best_curr_Clust_mat = Cluster_matrix;

best_cluster_size = cluster_size;

% khkdkhkhkhkhkkhkhkkhkhkhhhkdhkhkrkk END INITIALIZE CLUSTERING khkhhkhhkhkhkhhkhkhkhhkhkhkhkhdkrikikkkk

P Khkkhhkhhkhkhkhhhhkhhhhhhhhhdhhdhkkkhhkhhkhkhkrhh ko kkkhdhhhhhbhhdhhhhhhhhhkkrhdhdhhhdhk

% Clustering Routine *
% I E TS E SRR R R TR EESEEEEESESRRR RS XSRS X RS R RS R R X R XX R SRR R Rt Rt A s Rt R AR R R

% Initialize parameters

stakle = 0; % toggle to indicate if the algorithm has met the stability
criteria

change = 0; % toggle to indicate if a change should be made

acceptl= 0; % toggle to indicate if the solution should be acccepted
first_run = 1; % toggle to indicate if it is the first run through

pass = 1; % index to count the number of passes through the algorithm

% store best cost solution and data found up to this point
old_data(pass).Cluster_matrix = Cluster_matrix;
old_data(pass).cluster_size = cluster_size;
old_data(pass).total_coord_cost = total_coord_cost;

% **** start the clustering routine #***%*

% continue until the results have met the stability criteria

% AND the final solution is the same or better than any intermediate solution
that may

% have been found. Due to simulated annealing, a final solution may be worse
than an

% intermediate solution that had been found before making the random change

%

$ If the final solution is not equal to or less than any best solution, then
% return to the best solution and continue to search for a better solution.
% Do this until a better solution is found or we have looped back max_repeat
times.

% If we reach max_repeat, then report the best solution thathad been found.

while (((total_coord_cost > best_coord_cost) & (pass <= max_repeat))|
(first_run == 1))
if first_run == % only if not first pass through clustering routine

Ronnie E.

Thebeau

124

pas
% s

S = pass+l; % increment # passes
tore the current data

old_data(pass).Cluster_matrix = Cluster_matrix;
old_data(pass).cluster_size = cluster_size;
old_data(pass).total_coord_cost = total_coord_cost;

total_coord_cost = best_curr_cost;
Cluster_matrix = best_curr_Clust_mat;
cluster_size = best_cluster_size;
history_index = history_index+1;

cost_history(history_index,1) = total_coord_cost;
end
% reset the toggles back to zero
first_run = 0;
stable = 0;
acceptl = 0;
change = 0;
while (stable ~= stable_limit)
for k=1:DSM_size*times;

% (1) pick an element in a random location in the DsSM

elmt = cei. SM_size*rand(1l,1));% random number between 1 and DSM_cize

% (2) Accept bids for the elemement from all clusters
% cluster_bid(i) holds the bid for cluster i in

cluster_matatrix

[cluster_bid]=bid(elmt, DSM_matrix, Cluster_matrix, max_cluster_size,

pow_dep, pow_bid, cluster_size);

% (3) Determine the best bid & second best bid

best_cluster_bid = max(cluster_bid);

secondbest_cluster_bid =
max((best_cluster_bid~=cluster_bid).*cluster_bid);

% simulated annealing

if (floor(rand_bid*rand(1l,1)) == 0) % pick second best bid 1 out

of rand_bid times
best_cluster_bid = secondbest_cluster_bid;
end

if (best_cluster_bid>0)
% (3a) Determine if the BID is acceptable
% Initialize

cluster_list(:,1) = 0;

% Determine the list of clusters affected

cluster_list(l:n_clusters,l) = ((cluster_bid(:)==best_cluster_bid)

& (Cluster_matrix(:,elmt)==0));

% copy the cluster matrix into new matrices
new_cluster_matrix = Cluster_matrix;
new_cluster_size = cluster_size;

% proceed with cluster changes in the new cluster

new_cluster_matrix(l:n_clusters,elmt) =
new_cluster_matrix(1l:n_clusters,elmt) | cluster_list;

new_cluster_size(l:n_clusters) = new_cluster_size(l:n_clusters) +

(cluster_list==1)*1;

Ronnie E. Thebeau 125

% delete any duplicate or empty clusters
[new_cluster_matrix, new_cluster_sizel=
Delete_Clusters(new_cluster_size, new_cluster_matrix);

% determine the change in the coordination costs
[new_total_coord_cost] = Coord_Cost(DSM_matrix, new_cluster_matrix,
new_cluster_size, pow_cc);
if (new_total_coord_cost <= total_coord_cost)
acceptl = 1;
else
if (floor(rand_accept*rand(l,1)) == 0)% still accept 1 out of
approx random_accept times
acceptl = 1;
% if we are going to accept a total cost that is not less
than our current cost
% then
% save the current cost as the best current cost found so far
(only if the current cost
% is lower than any best current cost previously saved)
because we may not find
% a cost that is better than the current cost
%
% When we think we are finished we will check the final cost
against any best cost
¢ if the final cost is not better than the lowest cost found,
then we will move back to that best cost
if total_coord_cost < best_curr_cost
best_curr_cost = total_coord_cost;
best_curr_Clust_mat = Cluster_matrix;
best_cluster_size = cluster_size;
end
else
acceptl = 0;
end
end
end

if (acceptl)
acceptl=0;

$ (4) UPDATE the clusters

total_coord_cost = new_total_coord_cosct;
Cluster_matrix = new_cluster_matrix;
cluster_size = new_cluster_size;

history_index = history_index+1;
cost_history(history_index,1l) = total_coord_cost;

if (best_coord_cost > total_coord_cost)
best_coord_cost = total_coord_cost;
change = change + 1; % improvement in coord.cost
end
end
end

% (5) Test the system for stability
if (change >0)

stable = 0;
change = 0;
else
stable = stable + 1;

end

Ronnie E. Thebeau 126

end
end

Ronnie E. Thebeau 127

Coord_cost

function [total_coord_cost]) = Coord_Cost(DSM_matrix, Cluster_matrix,
cluster_size, pow_cc);

$[total_coord_cost] = Coord_Cost(DSM_matrix, Cluster_matrix, cluster_size,
pow_cc);

total_coord_cost total coordination cost

This routine checks all DSM Interactions. If a DSM interacticn is contained
n

% in one or more clusters, we add the cost of all intra-cluster interactions.

% If the interaction is not contained within any clusters, then a higher cost

is

%

%

% Function to calculate the coordination cost of the cluster matrix

%

% Inputs:

3 DSM_matrix The DSM matrix

% Cluster_matrix The cluster matrix (Cluster,Element)

3 cluster_size(n) array specifying the number of elements in cluster
n

% pow_cc value for the exponential weighting of the cost
function

%

%

% Outputs:

%

%

%

i

assigned to the out-of-cluster interaction.

Looking at all DSM interactions i and j.,
Are DSM(i) and DSM(j) both contained in any clusters
if yes: coordination cost is the sum of (DSM(i) +
SM(j))*cluster_size(cluster n)“pow_cc
across all clusters
if no: coordination cost is (DSM(i) + DSM(j))*DSM_size”pow_cc
Total coordination cost is equal to the sum of all coordination costs

9P 0P P O of 0P o0 o° R

I R R R R R R R R R R R R N R R N S R R R R R RS S R SER 2SR R SRR R R R R R
2 TSR E RS R R R R R L R RS RS E SRS RS SRR RS R RS AR Rt ARt R AR LS
X R R R R RS2 R R R R R R R R R R S SRR R R R RS RS R 2SS 2R R 2 R R s sl sl
I R R R R R R R R YRR RS SRR E R S SRR RS R 22X R R X2 22 2 s R AR AR s A Rl S
AR R A A K ARARR RN R A AR A AR AR AR A ARR AR AR AR AR A A AR IR TR R A AR AA RS R A AT AR A Rk Ak k

*

File: Coord_Cost.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000

Function to cluster the elements of a matrix
Algorithm based on work developed by Carlos Fernandez

This function calculates the "coordination cost" of the clustering
solution. Higher values are assigned to interactions outside of
than those occuring inside of clusters.

* * % ¥ * ¥ * * * * ¥ * * *

*

I R SRS SSSEEE R E RIS R SRS SRS SRR SRR R lsd s
)}

[R R PR SRR SR RSS2 S S22 X R Rt R el

OP d0 0P OGP OP I IO OGP OP OP O dP O OP OP 0P OP OP JP dP OP IR OP

Ronnie E. Thebeau 128

EEE A AR R R R R R R A R R Y 2 22 T I T TI T IT™
LR AR AR TR RS S e N 2223222 I I T I T T I I

% get the number of clusters and the size of the DSM
[n_clusters, DSM_size] = size(Cluster_matrix);

% intialize coordination costs
total_coord_cost = 0;
coordination_cost= zeros(1,DSM_size);

DSM_labels = cell(DSM_size,1l); % dummy variable for reorder function

reorder the DSM acording to the cluster matrix

NOTE: this re-ordering will duplicate entries for elements that show up
in more than one cluster. If an element is in three clusters, the new
DSM matrix will have three seperate entries for the element.

Therefore this new DSM matrix may be much larger than the original DSM
This essentially assigns a higher cost if the element is a memeber of

% more than one cluster

(New_DSM_matrix, New_DSM_labels] = reorder_DSM_byCluster(DSM_matrix,
Cluster_matrix, DSM_labels);

New_DSM_size = size(New_DSM_matrix,1l);

90 00 P Of of o

% get the number of elements in each cluster
Num_cluster_elements = sum(Cluster_matrix,2);

n=1;
New_Cluster_matrix = zeros(New_DSM_size, New_DSM_size);

% Create a new cluster matrix that matches the new reordered DSM matrix
% Because the DSM was reordered, columns of the cluster matrix must be re-
ordered
% to match the order of the new DSM Matrix. This is done for cost calculation
% purposes orly.
for i =1:n_clusters

New_Cluster_matrix(i,n:n+Num_cluster_elements(i)-1) =
ones(1l,Num_cluster_elements(i));

n= n+Num_cluster_elements(i);
end

% get new cluster size array that matches the new cluster matrix
New_Cluster_size = sum(New_Cluster_matrix,2);

% replace the old data with the new data for the cost calculation
DSM_size = New_DSM_size;

DSM_matrix = New_DSM_matrix;

Cluster_matrix = New_Cluster_matrix;

cluster_size = New_Cluster_size;

[n_clusters, DSM_size] = size(Cluster_matrix);
total_coord_cost = 0;
coordination_cost= zeros(l,DSM_size);

ERRE AR AR R SRR R R R R P S R R R R eI I
FER R R Y 2 22222 I T I T I I T ™™
PR R R L R Y R R R T T T T T T,

Ronnie E. Thebeau 129

P R R 2R R R R R 22X Z X2 2 XX R SRR R R RS2 X222 222 R xR 2 R ARSARES SRS E]

CALCULATE THE COST OF THE SOLUTION *
P 2R R AR R 22222 X R R R RS R SRR R RS RSS2 RES SRR SRR R R R 2R R AR R XA R R RS RS
P R R R A R R R R R R R R R 2 X XX R R R SRS RS AR SRR RS2 R R R R R R RS X R R a0 R R 8
P R R R A R R R R R R R R R R E R R Y R R R R R R R R R R R RS R RS SR AR XS R AR RS R R Rl S
I R AR R R R R R R R X R R R R R R R R R R R R L R R R RS RS RS R SRR R R R R R RS SXE R RS RSRRR R Xl R R RS

OP 0f P o0 90 0P oP

P R R N R R R A SRS SRR RS SRS RSl sl ls

for i=1:DSM_size
for j=i+l1:DSM_size % j=i+l1 to skip the diagonals
if (DSM_matrix(i,j)>0 | DSM_matrix(j,i)>0)% if a dependancy exists
between i & j
cost_total = 0;

% check if any clusters contain the both elements
for (cluster_index=1:n_clusters)
if
(Cluster_matrix(cluster_index,i)+Cluster_matrix(cluster_index,j)==2) % ie both
i & j belong to the same cluster
cost_total = cost_total + (DSM_matrix(i,j) + DSM_matrix(j,i)) *
cluster_size(cluster_index)“pow_cc;
end
end

if (cost_total>0)
cost_c = cost_total;

else
cost_c = (DSM_matrix(i,j) + DSM_matrix(j,1i))*DSM_size”pow_cc;
end
coordination_cost(i) = coordination_cost(i) + cost_c;
end
end

end

total_coord_cost = sum(coordination_cost);
% P R R R R R R R R R R R 22 R R XSRS EE RS RS R 2RSSR AR X RS SRR R R R 2R R Rl SR R R]

g HkkkkkAnhkrkkhkakkkkr® END COST CALCULATION **shkdkkhkhhhmkkathhrrhrkkkhhhthhs
R s L R R R R R e R SRS S 2 a S Al s

Ronnie E. Thebeau 130

reorder_dsm_bycluster

function [New_DSM_matrix, New_DSM_labels] = reorder_DSM_byCluster(DSM_matrix,
Cluster_matrix, DSM_label);

% (New_DSM_matrix, New_DSM_labels] = reorder_DSM_byCluster (DSM_matrix,
Cluster_matrix, DSM_label);

%

2

% Inputs:

% DSM_matrix DSM Matrix to be re-ordered

% Cluster_matrix Cluster Matrix to control the re-ordering
% DSM__label labels of the DSM elements (lebels need to be re-
ordered also)

3

%

%

% Output:

% New_DSM_matrix reordered DSM matrix

% New_DSM_labels reordered label array

%

%

iﬁ******Q*******tt***'.Q**ﬁ******ﬁ*ﬁ******i't'***t*******iﬁi***i*"*ﬁ******t
*********t*i*********t****tit************ﬁ*’t****i***t**********'*********
**************t**********t*tﬁ*i*ﬁ***t*****tt*t*t*t*i******f*itt********i**
\t************t**i***#**i***t***t*t********tittt***********ﬁ**t*t******
*t*t**********ﬁt**tiﬁ**********t****ﬁ*****ﬁt**tt*t*t********t********i**t*
*

File: reorder_DSM_byCluster.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000

Function to reorder the DSM Matrix accroding the the Cluster matrix.
Place all elements in the same cluster next to each other. 1If an

an element is a member of more than one cluster, duplicate that element
in the DSM for each time it appears in a cluster

LR R AR R TR N I T I I I Y

The new DSM will have all elments in a cluster next to each other
*

*i*t***********'ﬁ**********t*******t*****************'*****i******t*t*****t
*****t*********t*****i**********k***t***t***********k******************t**
t**i****t*********t*****************i***ﬁ*'k*****i****t*t********t****t
*******t**tt*t**************************t************t*t***'k*****t********

00 0P 0P dP OF 0P P OP P 0P P OP 0P OO P 0P P P 0P P OF P P 0P X

% place zeros along the diagonals of the DSM matrix
DSM_matrix = tril(DSM_matrix,-1) + triu(DSM_matrix,1) +
diag(zeros(length(DSM_matrix),1));

% get the size of the DSM matrix
DSM_size = size(DSM_matrix,2);

% find all element-to-cluster assignments
[Cluster_number, Element)] = find(Cluster_matrix);

$sort the element-to-cluster list in ascending order of clusters
[ordered_cluster_number, ClusterList_index] = sort (Cluster_number);

Ronnie E. Thebeau 131

new_number_elmts = length(ClusterList_index);

% Get the new rows of the DSM matrix
for i = l:new_number_elmts
temp_DSM_matrix(i,:) = DSM_matrix(Element(ClusterList_index(i)},:);
New_DSM_labels{i,1} = DSM_label{Element(ClusterList_index(i)),1};
end

% Now add the new columns of the DSM matrix
for i= 1l:new_number_elmts

New_DSM_matrix(:,i) = temp_DSM_matrix(:,Element(ClusterList_index(i))):
end

Ronnie E. Thebeau

132

reorder_cluster

function [New_Cluster_matrix] = reorder_cluster(Cluster_matrix);
% [New_Cluster_matrix] = reorder_cluster(Cluster_matrix);
£

Function sort and reorder the cluster matrix by size
Small cluster will be at tn: bottom of the list and large cluster
will be moved to the top of the list

Inputs:
Cluster_matrix The Cluster matrix

Outputs:
New_cluster_matrix The new sorted Cluster Matrix

W R JP P P P IR P P R

File: reorder_cluster.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000
Function sort and reorder the cluster matrix by size

Small cluster will be at the bottom of the list and large cluster
will be moved to the top of the list

OGP dP 0P dP 0P OO0 OP P 0P OP OP 0P OP OP P 0P M J0 OF P OF 0 o0

Num_clstelm = sum(Cluster_matrix,2);

[Y,I] = sort(Num_clstelm,1);
flipped_I = flipud(I);
New_Cluster_matrix(:,:) = Cluster_matrix(flipped_ I,:):;

AR SRR R RLASER AR R R AR R R R R R Ry R R PR R TR
AR SRR ARl R R R Ry R R R R R PR R R R R
LA A AR AR RS R R RS R RS E R R R R R R R R R R R Y R R R AR,
LA A SRS SRR RS AR R R R SRR S R R R R R R R R R U R R R U g R R U U G R Gy
LG AR AR ERE S 222 R R R R R E R R R R R R R R R}

»

* * % F X % * * # * * *

*

LA SRS E R R AR SRR R R TR U ey
LA AR A SRR RS RS E g Y Y R 2 AR}
LA R SRR R R R TR R RS RS R R L R R Y Y R R E R AR AR R s
LA AR AR AR SRR R R R Y Y Y R Y R R R]

Ronnie E. Thebeau 133

delete_clusters

function [new_cluster_matrix, new_cluster_size]= Delete_Clusters(cluster_size,
cluster_matrix);

${new_cluster_matrix, new_cluster_size]= Delete_Clusters(cluster_size,
cluster_matrix);

%

%

% Function to delete duplicate clusters or cluster that are within clusters
%

%

%

% Inputs:

% cluster_size Array of containing size of each cluster

% cluster_matrix The cluster matrix

%

$ Outputs:

) new_cluster_matrix Cluster Matrix after duplicates have been removed
3 new_cluster_size New array of cluster sizes

%

%

%

TR ARKRRA TR T AR TR T T AR RRR A AR AR A A A AR AR R T ARRAARARAANAA AR A AR A AT A AR A AR Ak Ak
I I R R R R R RS S R RS RS SR 222222 R Rt Rl Rl Rl R SRR
XY ZE R R TR RS SI R R RS RS A2 222 R 22 R R RS2 R a2 sl R Rttt Rl Rl dd
I R R R R R R R R R R R R R R R XSRS RS R R SRS SRR R R RSS2 222222 a2 s R Rttt RSy
I X R E TR R R R R TR TR RS RSN LSRR 2SR RS 2222 Rt Rt R RS

*

File: Delete_Clusters.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000
Function to calculate the bids from clusters for the selected element.

Each cluster makes a bid for the selected element based on the
bidding parameters.

* % % 4+ % % % % * % * * *

This algorithm is based on work by Carlos Fernandez.
*

AR R IR AR A KRR A KRR IR R AR R AR A AR A AR AR A AR A R A AR IR AR AN AT A kA ke kd X
R R R R R R R R R R 2R E R SRR R RS RS RS2 22 2Rttty
I R SRR R PR R RS IR RS SRS SSS R 22 22 s R R Rl E RS

0P 0P 0P 0P 0P JP JP P OP P OO0 OP OP OP OP P OJP O dP O I R K K

P R T R RS R RS S RS ES RS RS R S a2 2R s sttt sl

[n_clusters, n_elements] = size(cluster_matrix):;
new_cluster_matrix = zeros(size(cluster_matrix));
new_cluster_size = zeros(size(cluster_size));

% if the clusters are equal or cluster j is completely contained in cluster i
¢ delete cluster j
for i=1:n_clusters
for j=i+l:n_clusters
if (cluster_size(i) >= clustor_size(j) & cluster_size(j)>0)

Ronnie E. Thebeau

134

if all(((cluster_matrix(i,:) & cluster_matrix(j,:)) ==
cluster_matrix(j,:)))
cluster_matrix(j,:)=0;
cluster_size(j) = 0;
end
end
end
end

% if cluster i is completely contained in cluster j, delete cluster i

for i=l:n_clusters
for j= i+l:n_clusters
if (cluster_size(i) < cluster_size(j) & cluster_size(i)>0)
if all(((cluster_matrix(i,:) & cluster_matrix(j,:)) ==
cluster_matrix(i,:)))% cluster i is contained in j
cluster_matrix(i, :)=0;
cluster_size(i)=0;
end
end
end
end

% delete clusters with no tasks

non_empty_cluster_indx = find(cluster_size);
new_cluster_matrix(1l:length(non_empty_cluster_indx),:)
cluster_matrix(non_empty_cluster_indx, :);

new_cluster_size(l:length(non_empty_cluster_indx)) =
cluster_size(non_empty_cluster_indx);

Ronnie E. Thebeau 135

dsm_autolabel

function [numeric_DSM_labels] = DSM_autolabel(DSM_matrix);
% [numeric_DSM_labels] = DSM_autolabel (DSM_matrix);

%

%

% Function to create numeric text labels that correspond the the index
% in the DSM matrix. Element 1 gets a text lebel of "1", etc.
%

%

%

% Inputs:

2 DSM_matrix The DSM matrix

%

% Outputs:

%

mumeric_DSM_labels Cell array of numeric text labels

*ii***t*****i*t‘k*t**i*tﬁt**tit*ﬁ*'kﬁ****'****i'ﬁﬁﬁ***t**t*i*ﬁ'i****f***tt**f
ii***ﬁ**********t**i**‘\'*i**iﬁ*itﬁ******ﬁtti*******t******i'*i**t*******Qi*
ttti*********t***tﬁﬁﬁi*******ﬁ******ﬁ*******it***ﬁﬁi***ﬁ*ﬁ**********
#*it***i*******t***it*************************ﬁti*t*tﬁ********************

******t*****i*****t**t*********tt*****************ﬁ*******i************t*i

*

File: DSM_autolabel.m *
*

Created by: Ronnie E. Thebeau *
System Design and Management Program *
Massacusetts Institute of Technology *

*

Date: December 2000 *
*

Function to create a cell array of labels that correspond to each *
entry in the DSM *
*

***********ﬁ***it*************t*************************i*****************
'kt****************************
**********i***************i********************tt*t***********************

9P 0P OP OO OP 0P OP OP OO OP 0P OP OP OP 0P OP OF OF 0P dP P

*******t**t***k****i**************************************t***************

% get labels from the rows (will work for cluster matrix also)
num_labels = size(DSM_matrix,1); % get the number of labels needed

numeric_DSM_labels = cell(num_labels,1); $ create empty cell array
for i = l1l:num_labels

numeric_DSM_labels{i,1} = num2str(i):;
end

Ronnie E. Thebeau 136

place_diag

function [new_matrix] = place_diag(old_matrix, diagonal_element);
% [new_matrix] = place_diag(old_matrix, diagonal_element);

Function function to place the desired number along the diagonal of a matrix

Inputs:
old_matrix matrix to be manipulated
diaganol_element element to be place along the diagonal

Outputs:
new_matrix matrix witrh the desired element along the diag.

0P 90 oOF P IO IP P P I o I P

*ttt****i***tt******t**t***-ﬂii*****tt**ﬁ***************ﬁi*i***t*i*t****t*t
tﬁt*it*****if*t*****i*t*****t*t*******i*ttt*******ttt*t****t*****t*tl LES 2 & 4
*t*i*ﬁ*tﬁt*t*****ﬁ*****t****i**tittﬁ*********t***iiit***i*t**i**t**tt*****
LS RS AR R R R R R ER R R PR RY t**t*i***t*t*i****ﬁti*t***ﬁ*i**t*ﬁﬁ*******t***********
*tt***itt****t*t******tt*********t**h***i****i*t****#******ti*t**t********

*

File: place_diag.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000

Function to place a desired number along the diagonal of a matrix.

* O* %k % * * * ¥ ¥ #

*
************i***t***********i***t*************t************************Q**
****************************ﬁ*t********t**************t********\k********t*

OF dP O I 0P 0P P 0P OP OP P 0P OF P W R OP P P o0

*-A-*****n»********************t****************tt***#***t*t*****************
*********************************'k***'k*************'k'k********t************

a0

diag_matrix = diag(diagonal_element*ones(length(old_matrix),1)L

nevw_matrix = tril(old_matrix,-1) + triu(old_matrix,1) + diag_matrix;

Ronnie E. Thebeau 137

graph_matrix

function []=graph_matrix(matrix, x_title, y_title, graph_title, x_tcklabel,
y_tcklabel, print_flag, Cluster_matrix);
[l=graph_matrix(matrix, x_title, y_title, graph_title);

Function to graph the DSM or cluster matrix.
The data is plotted as a scatter graph and the size and color
of the marks are conrtrolled according to the value of the input

Inputs:
matrix matrix to be plotted on scatter graph
x_title string containing label for x-axis
y_title string containing label for y-axis
graph_title title for the graph
x_tcklabel labels to be placed along the x-axis
y_tcklabel labels to be placed along the y-axis
print_flag flag to toggle printing l=print, else no print

Cluster_matrix Optional Cluster_matrix of plotting the
lusterd DSEM

Outputs:

OF OdP OP P 0P OO () OP 0P OP OP IO P P 0P OF OP OP Jd? OF P P

P R R R R R R R R Z 2 R R R R R RS S X R RS SR RS S RS S R s R R R R R RS
I 22 R R R 22222 22 RS ES RSS2 R 2RSS SRR R 2222 R AR Rt Rt St sl
2 R 2R 2 2R 22222 X222 R R R XSRS S SRR S22 2R R RS2ttt s s d
I R R AR AR R R R R R R R R R R 2222 SR SRR R R RS XSS SRR 22222 2R s L Rty s

File: graph_matrix.m
Created by: Ronnie E. Thebeau
System Design and Management Program

Massacusetts Institute of Technology

Date: December 2000

* % * A * * ¥ ¥ ¥ *

Function to graph the DSM matrix or cluster matrix. If the DSM matrix

is to plLotted in clustered form, the cluster matrix must also be provided.
*

*
I R R R R 22222 X222 R 2R SRR RSS2 2 R R X2 X2 R ot sttt Rt d
R R R R R R R R R 22 2R R EE R 2RSS E RS ERS S ZRSR22RAR 2222 Rl AR X 0 R g

I R AR R R R R R R 22222 XXX ESR RIS RSS2 S22 22 2 R R 2 Xl t R Rt dd

0P 0P O OP OP OF OP dP O OP 0P dP d0 OO0 OP O 0P dP Of IR P

Tk AR AR R I AR AR R AR IR KRR AR RIAARR IR I I AR AR AR AR AR AR Ak bk bbbk Rk khh ke hhd

% Are we plotting cluster boxes?
if nargin < 8

Cluster_plot = 0;
else

Cluster_plot = 1;
end

[row_input, column_out, m_value] = find(matrix); % find non_zero entries

Ronnie E. Thebeau

138

max_row = max(row_input);

max_col = max(column_out);

ax = [0 max_col+l 0 max_row+l];
max_value = max(m_value);
data_scale = ceil(500/max_value)/20;

X_tcklabel_g{1,1}
y_tcklabel_g{1,1}

Iol.
’
IOI’,

for i = 1l:size(x_tcklabel, 1)
x_tcklabel_g{i+1,1} = x_tcklabeif{i,1};
end

for i = 1l:size(y_tcklabel, 1)
y_tcklabel_g{i+1,1) = y_tcklabel{i,1};
end

figure;
clf;

scatter(column_out, row_input, m_value*data_scale, m_value, "filled’,’d’);

axis(ax);

cur_ax = gea;

axes_scale = get(cuir_ax,'Position’);

set(cur_ax, 'Position’, [axes_scale(l) axes_scale(2) axes_scale(3)
axes_scale(4)*0.9]);
set(cur_ax, 'XTick’, (0:1:max_col+1l));
set(cur_ax, 'YTick’, (0:1:max_row+l));

set(cur_ax, ‘XAxisLocation’, 'top’,’YDir’, 'Reverse’);
set(cur_ax, 'XTickLabelMode’, ‘'manual’);

set(cur_ax, 'YTickLabelMode’, ‘'manual’};

set(cur_ax, 'XTickLabel’,x_tcklabel_gj;

set(cur_ax, 'YTickLabel’,y_tcklabel_g);

set(cur_ax, ‘'FontSize’,4);

set(cur_ax, ‘Box’,’0On’);

xlabel(x_title);
ylabel(y_title);
title(graph_title);
orient(’landscape’);

% draw squares around the clustered elements in the DSM
if Cluster_plot ==1
Number_clustars = size(Cluster_matrix,1);

sq_s = 0.5; %Start of the square
for cluster_indx = 1:Number_clusters

n_el = sum(Cluster_matrix(cluster_indx,:),2); % number of elements in

cluster

line([sq_s (sq_s + n_el) (sq_s + n_el) sq_s sq_s], [sq_s sq_s (sq_s +

n_el) (sg_s + n_el) sq_sl);
sq_s = sq_s + n_el;
end
end

if print_flag ==
print
end

Ronnie E. Thebeau

139

lire_mult_cluster

function [] = line_mult_cluster(Cluster_matrix, fig_handle, ax_handle});
%$[{] = line_mult_cluster(Cluster_matrix, fig_handle, ax_handle);

o0

9 d° 0P O P dP 0P 0P Od° OP P oF

OF OF d0 0P P J° OP OP OP P OP OP OP P OP OP P OP P JP 0P P

Function add vertical lines to the cluster matrix graph to indicate
which elements are members of more than one cluster

Inputs:
Cluster_matrix The Cluster matrix
fig_handle Figure Handle to add the lines
ax_handle Figure Axes handles

Outputs:

LA EE ARSI R RS2 as R Rl Rt i s 22ttt S R Y

LA AR A SRS RSS2 Rt as st 2Rttt R ARl RSt RS

LA R A AR RS Rttt i X2 2222ttt sttt Rl R RS

LA S AR AR SRR AR R RRlERRls Rttt sl il sttt st Rl Rt Rl RS Rl S
*

File: line_mult_cluster.m
*
Created by: Ronnie E. Thebeau *
System Design and Management Program *
Massacusetts Institute of Technology *
*
Date: December 2000 *

*

Function to add lines to the Cluster Matrix plot. The vertical lines *
will be placed along the elements that are members of more than one

cluster. *
*

*
(A2 SRR RSR R R R XS R R R X222 X2 22X ta 2l 2t i Rt Rl Rt R
KA R A R AR R A AR KA A A AR AR R A AT AR AR AR AR AR A AT IR RN A AR RA R AT AR AT AT dh
LA R AR RS R RSS2SRttt 2ttt ittt st s SR S S
L2 2 SR 2SR SRSl R R Rt i ittt xaRis 22l st Rttt Rl RSl RS S

[num_clusters, num_elmts] = size(Cluster_matrix);

X
Y lims

lims = get(ax_handle, ’'XLim’);
get(ax_handle, ’'YLim’);

num_el_clusters = sum(Cluster_matrix,1l);

for i = l:num_elmts

0.

if num_el_clusters(l,i) > 1
line([i i],[0 Y_lims(2)],'LineStyle’,’:’, 'MarkerSize’,0.5, 'Coloxr’,{0.5
5 0.51); g
end

end

Ronnie E. Thebeau 140

plot_cluster_list

function [] = plot_cluster_list(Cluster_matrix, DSM_matrix, E_name_list,
current_date, plot_flagqg);

$[] = plot_cluster_list(Cluster_matrix, DSM_matrix, E_name_list, current_date,
plot_flag);

%

%

% Function to calculate the bids from an element to each cluster of elements
%

%

% -

% Inputs:

% Cluster_matrix The Cluster Mtrix

% DSM_matrix The DSM Matrix

% E_name_list Array of strings that list the elements in the
cluster

% current_date Date string

% plot_flag toggle for printing; l=print, else don’t print
%

% Outputs:

%

LR A AR AR AR RS RR RS Rl R R XXX R X2 X X}
AR AR SRR RS R R R Rl e X R R R R RS R R R R X R R R XSRS RS R R R R R X R
LA SRR EE RS S SRS RS Rl R R R R R R R R R R R R R R R R R S R R
LA RS AR REE AR R R SS Rl s R E R R R s R R X R X R R XS SRR SR R AR RS X R 2R R R RS

LA AR R R R RS EERS SRR RS R R Rl R R R R R RS R R R SRR RS R R R R 2]

*
File: plot_cluster_list.m
*
Created by: Ronnie E. Thebeau *
System Design and Management Program
Massacusetts Institute of Technology *
Date: December 2000 *
*
Function to plot a text list of the clusters and the elements contained *
in the clusters. *
*
*

LA R AR SRR R AR R S R SR R XS R R R X S R R R R R S R R R R R R S R R RS R R R R R
LEA RS A AR TSRS RS R AR s RS AR XSRS R 2 SR 2 RS R X222 X E XX R X2 1
LAE R AR AR RS AR R AR R E R R RS R R R R R R R R R R R R R R R R R
AL AR SRR R R AR SRR R RS R RS SRR R X2 R R 2 RS SRRR XA SRR R R 20X 2

0P 0P 0P OP OF 0P OP 0 OF OPF OP 0P 0P OGP OP JP OP OF dP OP O O

LAA AR SRR RIS SRS RS R R R R AR SRR RS R R R X R R R R X R X R

%

% Simulation Data

% LR A RS2SR X R AR R AR R R X2 A2 R 2 SRS R R R R R R R R SRR R R R EE]
% scaling factors for the plotting area

top_of_list = 0.92;

stepsizel = 0.025;

ttl_offset = 0.05;

n=0;

[non_zero_clusters, nz_el] = find(Cluster_matrix);
num_clusters = max(non_zero_clusters);
num_elements size(Cluster_matrix, 2);

Ronnie E. Thebeau

141

el_num_clusters = sum(Cluster_matrix,1);

fig_row = 1;
fig_base = set_plot_props(current_date);

for i=1:num_clusters
num_entries = sum(Cluster_matrix(i,:) > 0);
if num_entries+n> 25
fig_row = fig_row+l;
n=0;
end

if fig_row>2
if plot_flag==
print;
end
fig_base = set_plot_props(current_date);
fig_row = 1;

end
if fig_row ==1
xposl = 0;
else
xposl = 0.6;
end
[cluster_yes,Element_yes] = find(Cluster_matrix(i,:)):;
n=n+2;

text (xposl+ttl_offset,top_of_list-stepsizel*n, [’\bf Cluster #’
num2str(i)l,...
'HorizontalAlignment’, 'Center’);
n = n+l;
text (xposl1-0.05,top_of_list-
stepsizel*n+0.02,’ P
’HorizontalAlignment’,’'Left’, ...
’interpreter’, ‘none’);
n=n+1l-1;

for z=1:num_entries

n=n+1;
el_DSM_num = Element_yes(z);
listentry = [E_name_list{el_DSM_num,1l} ’ (’ num2str(el_DSM_num)

if el_num_clusters(Element_yes(z)) > 1
text(xposl,top_of_list-stepsizel*n,listentry,...
"HorizontalAlignment’, 'Left’, ...
‘interpreter’, 'none’, ...
‘FontAngle’, ‘'normal’);
text (xposl-0.03,top_of_list-stepsizel*n,’'*’);
else
text(xposl,top_of_list-stepsizel*n,listentry, ...
'HorizontalAlignment’, 'Left’, ...
’interpreter’, ‘'none’);
end
end
end

if plot_flag == 1
print;

DI F

Ronnie E. Thebeau 142

end

function [fignumber] = set_plot_props(current_date);

fignumber = figure;

orient tall;

Result_Data_window = figure(fignumber);

clf reset;

set (Result_Data_window, ‘Name’, 'Cluster List’);
ax_handle = axes;

set (ax_handle, 'Visible’, '0ff’);

wd_units = get(Result_Data_window, ‘Units’);
set(Result_Data_window, ‘Units’,’'normalized’);
wd_position = get(Result_bData_window, 'Position’);
wd_left = wd_position(l);

wd_bottom = wd_position(2);

wd_width = wd_position(3);

wd_height = wd_position(4);

wd_left_new = 0.1;
wd_height_new = 0.75;

wd_bottom_new 0.1;

wd_width_new = 0.5;

wd_new_position = [wd_left_new wd_bottom_new wd_width_new wd_height_new];
set (Result_Data_window, 'Positicn’,wd_new_position);

set (Result_Data_window, 'Units’ ,wd_units);

% LA SRR R SR R R X R R R P R R R R P R R R AR R R]

3 Title & Header Data

% LA AR E SRS RS SRR R 2R X R R R R R R LR R R R TR R R R R R R R R R R R R RS

text(0.5,1, '\bf\fontsize{1l4} Cluster Member List’,...
"HorizontalAlignment’, ‘Center’);

text(0.5,0.97,[’\it ’ current_date], ...
‘HorizontalAlignment’, 'Center’);

Ronnie E. Thebeau 143

likeness_calc

o

likeness_calc

(2 XX RS2SRRSR 2SR R R 2R X R R R Rt R R R Rl ERE R sl S
[RS RS R XS ZERR SRS XS R R R X222 X222 R R 22 X222 xRt RSt R R R
[R SRS R SRR RS SRR 222 xRS R R X2 X a2 2 R X s X SR R st Rl R Rl SR

*

File: likeness_calc.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts lnstitute of Technology

Date: December 2000
Script file to get the average match between clusters of several runs

of the clustering algorithm. Must change the master file below
to run the proper DSm calculations

* * F % * * * * * * * *

*
X R R N R R R R R RS EEE RS R RS SRS S22 R RS R SR SRR RS RSt E RS
I R R R R R RS R R RS RS RS E S RS X222 R 2222 R i sl it R R SR d)

IR X R R RS ER SRR RS RS R 222222222 X 2222 22 22 2 Xt 22 d R R dR it R LRl R Rl

GP 0P OP OO dP d0 O 0P 00 OGP 0P AP 90 P OP P 0P O P OP

print_flag = 0; % to toggle printing; l=print, else no print

plot_flag = 1; $ toggle plotting of the likeness averages for all of the
runs

printplot_flag = 0; % toggle to print the plots of the likeness averages
num_runs = 10;

for get_data = l:num_runs
get_data
run_cluster_A % ***#xx*x* name of master cluster DSM file to complete the 10
runs *hhhkhkk
close all;
% Extract some of the clustering results for analysis
Results(get_data).Cluster_matrix = Cluster_matrix;
Results(get_data).total_coord_cost = total_coord_cost;
Results(get_data).cost_history = cost_history(l:max_run);
Results(get_data).New_DSM_matrix = New_DSM_matrix;
Results(get_data).New_DSM_labels = New_DSM_labels;
Results(get_data).params = Cluster_param;
Results(get_data).DSM_matrix = DSM_matrix;
end

get_date = now;
current_date = datestr(get_date,0);

% now plot the average matches

[Union_match] = find_cluster_matches(Results);

[Best_match, Average_match, Max_match, BclI,totalmean] =
get_match_avg(Union_match,Results, plot_flag, printplot_flag);

Ronnie E. Thebeau

144

find_cluster_matches

function [Union_match] = find_cluster_matches(Results);
%$[Union_match] = find_cluster_matches(Results);

E

%

% Function to find matching clusters from different runs of the clustering
algorithm

%

%

%

% Inputs:

3 Results Structure containing the results of multiple

% runs of the clustering algorithm

%

% Outputs:

% Union_match Cell array of the match between every cluster
2 of a run with every cluster of all other runs

% {Matrix_A,Matrix_B,Matrix_A_Cluster_x,

Matrix_B_Cluster_y} = match measurement

File: find_cluster_matches.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000

Function to find matching clusters from different runs of the
clustering algorithm

This algorithm is based on work by Carlos Fernandez.

OGP OF 0P OP 0P 0P OF 00 OP OP 0P OP OP OP 0P P P R KR P 0P N P

% match or likeness is calculated as follows

AR R SRR RSS2 X R R R R R R R Ry Y R R R
LA A A SRR R RS RS RS RS s Rl s iR s R e 2R R 2 R X R R I R R R R R R R
LAE AR SRR R EEREEE RSS2 R R R R R R R R TR X
LA E R SRR RS SR R R R S E R R XS R R R RS R R

AR R AR SRR AR AR RS R e s R R R R R R R R R

*

* % R % % % A * * * * #

*

LA RS2SR R R AR 2 X R e R R R R R R R R R R R R R R I R R e R R
LAAEE RS SRR s R A R R TR Ry R TR
AR R A SRR SRR AR RS R AR R R R e R R R R R R R X
AR AR SRR RS s s E R X R X R X R R R R R R R RN

% [2*sum(#elements in both clusters)]/{Sum(# of elements in Cluster A) + Sum(#

of elements in Cluster B)]

num_mat = length(Results):

test_data = Results(1l:num_mat);

for test_a = 1l:num_mat
frow_a, col_a)] = find(test_data(test_a).Cluster_matrix);
test_data(test_a).n_clusters = max(row_a);

end

Ronnie E. Thebeau 145

for aa = 1:num_mat
for bb = aa+l:num_mat
for cc = l:test_data(aa).n_clusters
for dd = 1l:test_data(bb).n_clusters
Cluster_union{aa,bb,cc,dd} =
(test_data(aa).Cluster_matrix(cc,:)
test_data(bb).Cluster_matrix(dd, :));
Union_sum{aa,bb,cc,dd}! = sum(Cluster_union{aa,bb,cc,dd});
Union_total_elmts{aa,bb,cc,dd} =
(sum(test_data(aa).Cluster_matrix(cc,:) +
test_data(bb).Cluster_matrix(dd,:)));
if Union_total_elmts{aa,bb,cc,dd} > 0
Union_match(aa,bb,cc,dd) =
2*Union_sum{aa,bb,cc,dd}/Union_total_elmts{aa,bb,cc,dd};
else
Union_match(aa,bb,cc,dd) = 0;
end
end
end
end
end

L *

Ronnie E. Thebeau 146

get_match_avg

function [Best_match, Average_match, Max_match, BclI, totalmean] =
get_match_avg(Union_match,Results, plot_flag, printplot_flag);
% [Best_match, Average_match, Max_match, BclI] =
get_match_avg(Union_match,Results);$%
%

Function averagve of matches between two runs of cluster calculations

%
%
%
2
% Inputs:
%
c
%
%
%

Union_match Cell array of likeness calculations between the
lusters
Results Structure of Results from running the clustering
algorithm multiple times
plot_flag toggle the plotting of figures summarizing the
results (1l=plot, 0O=no plot)
3 printplot_flag toggle printing of the plots
%
% Outputs:
% Best_match the best match average for a cluster of run x to
any cluster
% in run y
% Average_match the average match for a cluster of run x to all
other best matched
% clusters in other runs
% in run y
% Max_match the best match for a cluster of run x to all other
best matched
% clusters in other runs
% in run y
% Bell the index of best matches between clusters
% totalmean mean of the likeness averages for all of the

clusters of a run

LAARASE SRS SRR R R R R R R R R R R R Ry N Y R R R R AR
LA AR RS SRR AR R EEEEEEEE R R R R N R R R R R R R R R R R
LAALSAREEEASES AR RS R E R R R R R R R R R R R R O R R R R R R R O
LAEA AR AR S AR RS R s R R R R R R R R R T R R R R)
LERAAREES SRR R R R R R R R R R R R R R,

*

File: get_match_avg.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

Date: December 2000
Function to calculate the bids from clusters for the selected element.

Each cluster makes a bid for the selected element based on the
bidding parameters. An plot the results.

* % * * * * * * * * * *

*
LA RS AR SRS E AR R R R R R R Y R R R A]
LA AR SRS R RS E R R E R R R R R R R R
LA AR SR RR R R R Y R R R R R R R I

OF 0P P dP 0P P OO0 0P IP OP OP IO OP P P OP P OF P OF P 9P R

LRSS ARE SRS RS E R R R R R R R R R R R R R R R R R T R R R R]

Ronnie E. Thebeau 147

test_data = Results; % get the clustering results
[num_runs] = size(Union_match,2);

for test_a = l:num_runs
[row_a, col_a)] = find(test_data(test_a).Cluster_matrix);
test_data(test_a).n_clusters = max(row_a);

end

for Runl = 1l:num_runs
for Run2 = l:num_runs
if Runl ~= Run2
for Cluster_R1l = l:test_data(Runl).n_clusters
if Runl< Run2
[Best_match(Runl,Run2,Cluster_R1),BclI(Runl,Run2,Cluster_R1)]
max((Union_match(Runl,Run2,Cluster_R1l, :)),[]1,4);

else
[Best_match(Runl,Run2,Cluster_R1l),BclI(Runl,Run2,Cluster_R1)] =
max((Union_match(Run2,Runl,:, Cluster_R1l)),[],3);
end
end
end
end
end
c_run = [];
for Runl = 1l:num_runs
for j=1:num_runs
if j ~= Runl
c_run = [c_run, jl;
end
end

for Cluster_rl = 1l:test_data(Runl).n_clusters
Average_match(Runl,Cluster_rl) = mean(Best_match(Runl,c_run,Cluster_rl));
Max_match(Runl,Cluster_rl) = max(Best_match(Runl,c_run,Cluster_rl));
end
end

if plot_flag == 1
plots_per_page = 5;

[num_runs, num_clusters] = size(Average_match);

plot_num = O;
figure;
for i=1:num_runs
n_cluster = nnz(Average_match(i,:));
totalmean(i) = mean(Average_match(i,l:n_cluster));
end

Total_run_mean = num2str(mean(totalmean));
Total_run_median = num2str(median(totalmean));

for i=1:num_runs
plot_num = plot_num+l;
if plot_num > plots_per_page
if printplot_flag ==
print
end
figure;

Ronnie E. Thebeau

plot_num = 1;
end
subplot(plots_per_page, 1,plot_num);
n_cluster = nnz(Average_match(i,:));
bar(Average_match(i,:),’'k’);
ylabel([’Run ’ num2str(i) ‘ Avg’]);
Tcost = Results(i).total_coord_cost;
xlabel([’Clusters (total Avg: ’ num2str(totalmean(i)) '); Coord Cost:
num2str(Tcost)]);
if (i == 1) | (mod(i, (plots_per_page+l))==0)

title([’Mean: ' Total_run_mean ’ Median: ' Total_run_median]);
end
grid;
orient tall;
hold on;
plot(Max_match{i,:),’'rx’);
end

if printplot_flag ==1
print
end
end

Ronnie E. Thebeau 149

Bibliography

Bartkowski, Glenn D. “Accounting for System Level Interactions in Knowledge
Management Initiatives” SM Thesis. Massachusetts Institute of technology, Feb 2000.

Dong, Qi. ""Representing Information Flow and Knowledge Management in Product
Design Using the Design Structure Matrix" SM Thesis. Massachusetts Institute of
Technology, Jan 1999.

Fernandez, Carlos Ifiaki Gutierrez. “Integration Analysis of Product Architecture to
Support Effective Team Co-location” SM Thesis. Massachusetts Institute of Technology,
1998.

The MIT Design Structure Matrix — DSM ~ Home Page. Massachusetts Institute of
Technology. 19 Dec 2000. < http://web.mit.edu/dsm/>

Otis Impact Resource CD. Vers. 3.1. CD-ROM. Otis Elevator Company 2000

Otis.com. Otis Elevator Company. 19 Dec 2000. <http://www.otis.com/>

Pimmler, Thomas U. and Stephen D. Eppinger, “Integration Analysis of Product
Decomposition” Working Paper. Alfred P. Sloan School of Management, Massachusetts
Institute of Technology, May 1994: WP #3690-94-MS

Rechtin, Eberhardt. Systems Architecting. Englewood Cliffs: Prentice Hall, 1991

Rechtin, Eberhardt and Mark W. Maier. The Art of Systems Architecting. NewYork:
CRC Press, 1997

Ulrich, Karl T. and Stephen D. Eppinger. Product Design and Development. New York:
McGraw-Hill, 1995

THESIS PROCESSING SLIP

FIXED FIELD: ill. name

index biblio

»> COPIES: Archch'e_si Aero Dewey -‘,_@arker::’ Hum
Lindgren Music Rotch Science Sche-Plough

TITLE VARIES: »[|

NAMEVARIES: »[] + |, . . 1., ,; (
IMPRINT: (COPYRIGHT)
> COLLATION:

» ADD: DEGREE: ——___ » DEPT.;

> ADD: DEGREE: —____ » DEPT.:
SUPERVISORS:
NOTES:
cat'r: date:
page:
»DEPT: ___ 00N I 4
» YEAR: __ » DEGREE:)

» NAME:

